Библиотека / Философия / Гутнер Г : " Онтология Математического Дискурса " - читать онлайн

Сохранить .
Онтология математического дискурса Г Б Гутнер
        Гутнер Г Б
        Онтология математического дискурса
        Г.Б.Гутнер
        Онтология математического дискурса
        Введение Глава 1. Рассмотрение онтологического статуса предметов математики в некоторых философских системах 1 Платон и Аристотель: определение сущности 2 Сущность как мыслящая субстанция 3 Математическое существование в философии Канта. Предварительное рассмотрение Глава 2. Интерпретации существования в математике 1 Основные стратегии доказательства существования 2 Концепция существования у Кантора 3 Брауэровская интерпретация существования 4 Интерпретация существования в философии математики Гильберта Глава 3. Существование в геометрии. Анализ категорий модальности 1 Возможное и действительное в математике 2 Структура доказательства у Евклида в связи с категориями модальности 3 Необходимость и случайность 4 Возможное и действительное в отношении ко времени 5 Дискретность и непрерывность в структуре дискурса 6 Различие и тождество в дискурсе 7 Трудности рассматриваемого подхода и традиционные философские проблемы Глава 4. Именование и существование в структуре дискурса 1 Имя и действительность 2 Математический дискурс, основанный на именовании 3 Дискурс имен и неконструктивные "объекты"
Заключение Библиография
        -----
        Введение
        Практически в любом математическом рассуждении решается проблема существования какого-либо предмета. Это можно принять, прежде всего, как своего рода эмпирический факт, поскольку содержанием значительной части теорем любого раздела математики является утверждение о существовании. Говорят о существовании нужного построения (в геометрии), о существовании корней уравнения (в алгебре), о существовании предела последовательности (в математическом анализе) - примеры можно множить безгранично. Однако нетрудно заметить, что даже в трех приведенных примерах смысл слова "существует" - не один и тот же. Прямая, проходящая перпендикулярно данному отрезку через его середину, существует потому, что может быть построена в соответствии с предписанными рядом геометрических утверждений правилами. Предел произвольной монотонной ограниченной последовательности не может быть построен в результате какой-либо процедуры, однако он также существует, хотя вывод о его существовании делается совершенно на иных основаниях. Каждый математик, по-видимому, так или иначе отвечает для себя на вопрос о том, как следует определить
понятие существования для математических объектов. Во время фундаментальных дискуссий об основаниях математики, проходивших в начале XX века, эта проблема обсуждалась многими и мы обсудим ряд концепций существования во 2-й главе нашей работы. Сейчас же заметим, что вопрос о том, как понимать существование в математике прямо связан с тем, как доказывается существование математического объекта.
        Названная проблема решается, как правило, в рамках математики. Однако можно поставить вопрос о существовании математических объектов иначе. Можно спросить, какова природа математических объектов или каков их онтологический статус. Их можно считать самостоятельными интеллигибельными сущностями, абстрагированными от чувственно воспринимаемых вещей свойствами, чистыми конструкциями ума и т.д. Наверное каждая философская система попыталась определить свое отношение к математике и выяснить как именно существуют и существуют ли вообще ее предметы.
        Вопрос об онтологическом статусе - это также вопрос о том каков смысл слова "существует" в применении к математическому объекту. Однако в философии этот вопрос должен быть понят иначе, чем в математике. Философской проблемой в данном случае является, на наш взгляд, отношение рассуждения (в частности математического рассуждения) к своему предмету. Исследованию подлежит вопрос о том, как постигается или как создается предмет в ходе рассуждения и в силу каких обстоятельств предмет может быть определен в рассуждении как существующий.
        Можно выделить два альтернативных подхода к рассмотрению онтологического статуса предмета (в частности, предмета математики). Предмет можно рассматривать как сущность, обладающую определенными свойствами, или как элемент в определенной системе отношений. Поэтому изучение природы математических объектов можно проводить в рамках, заданных двумя, в определенном смысле конкурирующими, категориями - сущности и структуры. Дискуссия между сторонниками двух связанных с этими категориями подходов весьма типичная черта жизни философского и математического сообщества как в прошлом, так и сейчас. Ниже мы попытаемся обосновать это утверждение рядом ссылок.
        Говоря об отношении рассуждения к предмету рассуждения мы выделяем два подхода, смысл которых впервые был явно прописан Шеллингом во Введении к "Системе трансцендентального идеализма". Здесь проведено разделение между понятиями субъективного и объективного и соответственно между натурфилософией и трансцендентальной философией. Субъективное и объективное рассматриваются Шеллингом как два противоположных начала, необходимо сосуществующих в любом наличном знании ([61], с.232). Вопрос о том, "кому из них принадлежит приоритет", т.е. что является подлинной исходной точкой всякого знания - мышление (Я, интеллигенция) или природа невозможно разрешить однозначно. Но чтобы построить систему знания необходимо принять одно из указанных начал в качестве реальной предпосылки и попытаться вывести из него второе. Систему рассуждения, принимающую в качестве исходной посылки природу, Шеллинг называет естествознанием или натурфилософией. Противоположный подход, принимающий в качестве безусловного начала субъективное, он называет трансцендентальной философией.(См. примечание 1)Задачу последней Шеллинг формулирует
предельно жестко. Само представление об объекте (природе, вещах и т.п.) должно быть дедуцировано из рассмотрения деятельности мыслящего Я. Утверждение о том, "что вне нас существуют вещи," должно быть отброшено, как предубеждение ([61], 235; курсив Шеллинга). Следовательно, в рамках трансцендентальной философии само понятие объекта должно быть рассмотрено как нечто производное от структуры мышления. Если натурфилософский подход призван решать как должна действовать мысль, чтобы достичь достоверного знания о существующей вне ее природе (независимом мире объектов), то трансцендентальный подход призван выяснить как должен быть устроен объект, чтобы стать адекватным познающей его мысли. Соответственно этому ставится вопрос о действительности объекта или о его существовании. Для трансцендентальной философии существование есть особый способ представления объекта мыслью. Рассмотрение онтологической проблематики в рамках трансцендентального подхода состоит, следовательно, в рассмотрении структуры рассуждения и обнаружении в нем таких способов отношения к предмету, которые позволили бы сказать о нем, что он
существует. Иными словами, речь должна идти о способах правильного конструирования объекта в рассуждении.
        Разделению двух подходов, которое провел Шеллинг, на наш взгляд коррелятивно рассмотрение двух способов образования понятий в математике и естественных науках, проводимое Кассирером в книге "Познание и действительность"[32]. Первый из названных способов он связывает с логикой Аристотеля и категорией субстанции. Логический ход, на который обращает внимание Кассирер, сводится к процедуре абстракции, т.е. отвлечения от единичной вещи ("первой сущности") ряда свойств, общих для нее с другими вещами. Образование понятий связано, следовательно, с последовательно проводимым обеднением содержания и увеличением степени общности понятий. При таком подходе всякое рассуждение должно рассматриваться как работа с общими (абстрактными) представлениями, описывающими классы сходных между собой сущностей. В таком рассуждении сущность, обладающая свойствами, должна неизбежно рассматриваться как отправная точка и как конечная цель мысли. Мышление в понятиях исходит из сущности, как из носителя свойств, которые должно абстрагировать. С другой стороны оно направлено на то, чтобы лучше понять эту сущность, т.е.
высказать о ней наиболее достоверное суждение.(См. примечание 2)Альтернативный способ образования понятий, описанный Кассирером, исходит из той посылки, что "никакое суммирование отдельных случаев не может создать то специфическое единство, которое мыслится в понятии" ([32], c. 38). Такое единство дается не абстракцией, а специфической логической формой, позволяющей произвести любой подпадающий под это единство предмет. Например, "логическая определенность числа "четыре" дана благодаря его нахождению в ряду идеальной - и потому вневременно-значащей - совокупности отношений, благодаря его месту в математически определенной числовой системе" ([32], c.39). Понятие есть тогда логическое правило или функция, позволяющее определить структуру отношений, в которой единичный предмет оказывается элементом.
        Проводимое Кассирером различение определяет два различных понимания категорий "общее - единичное". В первом случае под общим понимается свойство, равно присущее многим единичным предметам. Во втором - речь идет об общей структуре, объединяющей множество различных элементов. Причем свойства этих элементов не играют особой роли. Важно прежде всего то, что они отличны друг от друга, а единая логическая форма определяет структуру их отношений.(См. примечание 3)При таком подходе к рассуждению его предмет мыслится существующим постольку, поскольку оказывается определенным его место в заданной структуре. Он должен быть выведен из общей логической формы, т.е. заново произведен рассуждением как ее особенный элемент. Из сказанного ясно, что "структурный" подход к процедуре образования понятий, равно как и соответствующая ему интерпретация существования, возможны лишь в рамках трансцендентальной философии. Производящая объекты структура - это структура, внутренне присущая дискурсу, т.е. - в терминологии Шеллинга принцип действия субъекта. Все "объективное", "природное", "внешнее" определяется через него и из
него дедуцируется. Собственно категории "объект" и "природа" также оказываются особыми структурами дискурса, а понятия "внутреннего" и "внешнего" вовсе теряют смысл. (См. примечание 4)
        Противопоставление категорий сущности и структуры при исследовании природы и онтологического статуса математических объектов является главной методологической посылкой нашего исследования. Его целью является попытка развития трансцендентального подхода к рассмотрению математического мышления и предмета математики. При этом мы будем обращаться к категориям, разработанным преимущественно Кассирером и Кантом. Одной из наших целей будет обоснование тезиса, обратного к только что сформулированному. Мы попытаемся показать, что всякое трансцендентальное рассмотрение обязательно приведет к пониманию существования как существования элемента в пределах заданной структуры отношений.
        Противопоставление двух выделенных в настоящем Введении подходов к определение природы математических объектов и их онтологического статуса довольно заметно в современной философии математики. Каждый из этих подходов весьма интенсивно развивался в XX столетии и достаточно явно оформился в виде направлений, известных под именами математического реализма и математического структурализма. Первый характеризуется (см. [5], c. 144) как тенденция "рассматривать математические объекты: числа, фигуры, множества как существующие в особом мире, данные до их собственно математического анализа". Беляев и Перминов - авторы цитированной здесь характеристики - возводят эту тенденцию к Платону и Лейбницу, для которых "математические утверждения ... отражают мир вечных и идеальных сущностей" (с. 146). Современный математический реализм они связывают, прежде всего, с именами Фреге и Рассела (с. 146). Здесь речь должна идти по преимуществу о попытке определения числа на основании логических аксиом. Эта попытка приводит к пониманию числа как универсалии, она подразумевает определение "единственного и вполне
конкретного объекта, а именно натурального числа самого по себе, в его свойствах" (с. 147).
        Дальнейшее развитие этого направления связано с работами Бернайса[63] (См. примечание 5) и Г?деля [69] и [70]. Исследования Г?деля интересны в частности тем, что развивают своего рода реалистическую гносеологию. В них делается попытка объяснения, каким образом независимые от человека сущности математического мира становятся доступными познанию. Г?дель основывает математическое знание на особой интуиции, способности непосредственно обнаруживать свойства математических сущностей и формулировать их в виде аксиом. Такое непосредственное обнаружение Г?дель уподобляет чувственному восприятию в естествознании. Числа, геометрические фигуры или множества, воспринимаемые интуицией, он полагает столь же реальными как физические тела, воспринимаемые чувствами. Интуиция при этом не только позволяет непосредственно видеть определенные факты, но также выступает как критерий истинности математических утверждений более общего характера, которые не являются интуитивно ясными, но оказываются плодотворными при выводе теорем. "Могут существовать аксиомы столь богатые поддающимися проверке следствиями, проливающие
столь много света на всю область и приносящие столь мощные методы решения проблем, что не имеет значения являются ли они интуитивно ясными или нет, их следует принять, по крайней мере так же, как и всякую хорошо обоснованную физическую теорию" ([70], c. 477). Следовательно, факты, принимаемые несмотря на их недоступность интуиции подобны постулатам физических теорий, связывающим в единое целое совокупность чувственно воспринимаемых явлений.
        На параллелизм математического и естественнонаучного знания указывает современная американская исследовательница П.Мэдди. В своей монографии, посвященной реализму в математике [77], она делает довольно полный обзор существующих ныне реалистических концепций и, разбирая их проблемы, дает собственную версию математического "платонизма". Приводимое ей общее "кредо" всего исследуемого направления выглядит так: "математика есть научное рассмотрение объективно существующих предметов (entities), точно так же, как физика есть изучение физических сущностей" (с. 21). Мэдди указывает на слабую сторону представленного взгляда - она состоит в том, что такие математические сущности, если они совершенно независимы от нашей мысли, должны быть полностью ей трансцендентны и совершенно неясно как они могут стать достоянием научного знания. (Мы видели, что эту проблему пытался решать и Г?дель). Сильной стороной реализма она считает тот факт, что с его позиций можно объяснить необычайную эффективность математики в исследовании физического мира. Если реальность математических предметов такова, как реальность физических
тел, то мы можем мыслить некий единый мир, состоящий из физических и математических сущностей, находящихся в стройном взаимодействии. Свои усилия Мэдди направляет в значительной мере на преодоление указанной ей трудности, уделяя, вслед за Г?делем, большое внимание проблеме интуиции.
        Мэдди считает реализм не только философским течением, но и наиболее распространенным типом воззрений, почти стихийно установившимся среди математиков. Она пишет, что математики видят себя и своих коллег исследователями, открывающими свойства разнообразных увлекающих их областей математической реальности" ([77], c. 1). Но как бы ни был распространен этот взгляд, он отнюдь не является единственным. Нам представляется интересной характеристика, которую дает Ван-дер-Варден стилю математического мышления Эмми Н?ттер: "Максима, которой постоянно руководствовалась Эмми Н?ттер, могла бы быть сформулирована следующим образом: все отношения между числами, функциями и операциями становятся абсолютно ясными, способными к обобщению и истинно плодотворными лишь тогда, когда они освобождены от их конкретных объектов и сведены к общим отношениям понятий" (Цит. по [59], c. 299). Именно такой стиль мышления стал основной темой для философско-математического направления, известного как структурализм. Впрочем, центральной фигурой для мыслителей, причисляющих себя к этому течению, является не Н?ттер, а Гильберт. Его
аксиоматические построения очевидно имеют дело не с сущностями, а с отношениями элементов, собственные свойства которых не играют никакой роли для развития теории. Именно к аксиоматическим системам гильбертовского типа апеллирует работа Н. Бурбаки "Архитектура математики"([10]), в которой подробно рассматривается категория структуры. Под структурой понимается множество элементов, природа которых не определена, но для которых задана некоторая совокупность отношений. Эта совокупность отношений содержится в аксиомах, которые собственно и определяют структуру математической теории. Последняя получается в виде логических следствий из аксиом, сделанных при полном игнорировании от всяких, не содержащихся в этих аксиомах гипотез относительно свойств элементов (с. 251). Математика, следовательно, понимается как работа со структурами, а не как исследование сущностей. "В своей аксиоматической форме математика представляется скоплением абстрактных форм - математических структур, и оказывается (хотя по существу и неизвестно, почему), что некоторые аспекты экспериментальной действительности как будто в результате
предопределения укладываются в некоторые из этих форм" (с. 258-259). Замечание, взятое в скобки, можно, вообще говоря, истолковать как признание некоторой слабости структурализма в сравнении с реализмом. Как мы видели последний претендует на способность объяснить связь математической и "экспериментальной" действительности.
        Структурное направление в рассмотрении природы математических объектов получило в дальнейшем значительное развитие, преимущественно усилиями французских исследователей. Обзор их работ приводится, например, в [59]. Здесь же указывается на взаимосвязь математического структурализма со структурализмом в языкознании. Серьезное исследование понятия структуры в математике и естествознании предпринято в монографии Н. Мулуда [37]. Этот ученый указывает на два нетождественных представления о структуре, используемых в науке. Согласно первому, структура есть комплекс взаимодействующих элементов, каждый из которых не может быть рассмотрен изолированно от остальных. Второе представление рисует структуру как "множество элементов, определяемых некоторыми отношениями такого рода, что становится возможным вывести все реляционные свойства элементов в случае, если даны операциональные правила, позволяющие преобразовывать доминирующие отношения". Первое из названных представлений характерно для описания природных и общественных феноменов (например ансамбля частиц в физике или общественных групп в социологии). Второе
прежде всего относится к аксиоматическим построениям в математике. Мулуд, впрочем, замечает, что при развитии теоретического знания представление о структуре как о комплексе неизменно превращается в описание "операционального" (или "аксиоматического") типа ([37], c. 30-32).
        Математический структурализм получил также существенное развитие в работах группы английских и американских авторов. Их исследования также касаются главным образом аксиоматических систем и потому центральным персонажем их работ неизменно оказывается Гильберт (см. [81] и [82]). Приведем весьма емкую характеристику структурализма, которую дает один из ведущих философов этого направления М. Резник: "Под структурализмом я понимаю общий философский подход к математике, основное кредо которого состоит в том, что математика изучает структуры и что математические объекты суть ничто иное как места в этих структурах" ([81], c. 83). Важной особенностью исследований англоязычных авторов является, на наш взгляд, попытка выяснить отношения с реализмом (или платонизмом), который некоторые из них рассматривают как главную альтернативу структурному подходу. Так Б. Хейл, выделяя ряд течений в рамках структурализма, отмечает, что все они "противостоят платонистскому взгляду на математику". Характеризуя последний, Хейл цитирует С. Шапиро: "Традиционный платонизм полагает, что предметом исследований той или иной
математической дисциплины является совокупность абстрактных объектов, таких как натуральные числа, каждый из которых в определенном смысле онтологически независим от любого другого" ([73], c. 126).
        Существует одна, на наш взгляд странная, особенность, присущая практически всем исследователям, придерживающимся структуралистского подхода. Мы уже отмечали, что идея структуры разрабатывалась - задолго до возникновения структурализма - в творчестве Кассирера (равно как и других философов Марбургской школы). Однако никто из структуралистов (насколько, по крайней мере, нам известно) не указывает на какую-либо связь с кантианской или нео-кантианской традицией. Более того, в ряде работ встречается известное отторжение этой традиции. В частности Мулуд указывает на несовместимость кантовской системы с аксиоматическим подходом ([37], c. 36). (См. примечание 6) Шапиро ([82], c.149) рассматривает появление аксиоматических методов и связанного с ними структурного подхода как попытку освободить математику от априорных форм созерцания (т.е. от интуиции пространства и времени). Гильбертовскую программу он считает поэтому "глубоко анти-кантовской", несмотря на то, что сам Гильберт неоднократно заявлял о своих кантианских пристрастиях (с. 156).
        Задачей нашего исследования является согласование трансцендентального метода со структурным подходом. Мы попытаемся обосновать, что - как уже отмечалось выше - именно трансцендентализм (кантовского типа) делает структуру основной категорией математического и естественнонаучного мышления. Более того, трансцендентализм дает полное обоснование структурализма: именно в рамках трансцендентального рассмотрения становится понятным каким образом формальная система (т.е. структура) оказывается адекватным средством описания физической реальности и почему, в частности, математика столь эффективна при изучении природы. Таким образом будет установлено, что структурализм обладает теми же преимуществами, которые П.Мэдди находила лишь у реализма.
        Другой задачей предпринимаемого исследования будет разработка ряда категорий, необходимых, на наш взгляд, для структурного описания математического мышления. Проблема состоит прежде всего в том, чтобы представить понятие структуры в виде философской категории. Для этого необходимо согласовать его с рядом других категорий, в значительной мере обуславливающих друг друга. Прежде всего это - объект, конструкция и дискурс. Нашей задачей будет по возможности точное определение этих категорий, объяснение их связи и уточнение их онтологического смысла. Говоря об онтологическом смысле категорий, мы имеем в виду способ использования их в рассуждении - мы, иными словами, попытаемся установить, как, пользуясь названными категориями, можно установить существование или описать нечто как существующее (См. примечание 7)
        Примечания к Введению
        1. Собственная задача Шеллинга состоит в том, чтобы развить оба названных подхода и показать их конечное тождество. Нас ни в малейшей мере не будет интересовать возможность реализации подобного проекта, но само произведенное Шеллингом разделение представляется очень существенным. вернуться в текст
        2. Кассирер считает, что существо описанной логической процедуры не будет меняться от того, что именно полагается в основание образуемого абстрактного понятия. Это может быть и единичная вещь, о которой "сказываются" ее свойства, и субстантивированная универсалия (как это полагают средневековые реалисты), и психическое переживание, т.е. восприятие или ощущение, не обязательно связанное с какой-либо внешней реальностью. вернуться в текст
        3. Самый простой пример такого понимания общего - теория групп разбирается Кассирером в связи с рядом современных ему представлений с психологией зрительного восприятия в [68]. Логическое правило, задающее группу, определяет множество ее элементов, о которых не нужно знать ничего, кроме того, что они отличны друг от друга. Именно таким логическим правилом может быть задана группа преобразований пространства в геометрии. Инварианты определенных таким способом преобразований могут быть, по мысли Кассирера также и инвариантами зрительного восприятия пространства. С другой стороны, этот способ понимания общего отнюдь не является изобретением Кассирера. Например, Боэций, описавший процедуру абстрагирования как возможное решение проблемы универсалий ([9], c.27-31), указал и такую возможность интерпретации общего, при котором оно не может быть ни субстанцией, ни чем-либо, сказывающимся о субстанции. Так, единая вещь, может быть общей многим различным и тогда, "когда она становится общей для всех одновременно, но тогда она не составляет субстанции тех, для кого является общей, как, например, театр или
любое другое зрелище, общее для всех зрителей" ([9], c. 25). Даже если спектакль, объединяющий многих зрителей (и исполнителей), и не является строго определенной логической формой, то во всяком случае представляет собой единую систему отношений, сообразную некому замыслу. вернуться в текст
        4. Кассирер показывает, что оппозиция "внутреннее - внешнее" есть порождение субстанционального подхода. Именно такой подход противопоставляет объективную вещь и субъективное представление о вещи. Это противопоставление порождает весьма тяжелую проблему адекватности представления вещи. Внешняя (объективная) реальность неизбежно должна быть трансцендентна субъекту. См. [32], c.349-400. вернуться в текст
        5. Бернайс был по-видимому первым, кто ввел для обозначения рассматриваемого направления термин "платонизм", достаточно широко используемый в современной литературе. вернуться в текст
        6. Суждение Мулуда о Канте имеет, на наш взгляд, принципиальное значение. Он обращает внимание на важное достижение кантовской философии способность согласовать априорность логической формы и апостериорность опытных данных. "Однако, - пишет далее Мулуд, - гармония между формой и содержанием, которую гарантирует трансцендентальная философия, освобождает разум от необходимости искать адекватный аппарат формализации данной реальности, что как раз входит в задачу аксиоматических наук. Кантовская система не располагает процедурами, которые позволяют осуществить аксиоматизацию, одновременно верифицируя формальную систему, для экспликации новых аспектов предмета" ([37], c. 36). Такая оценка кантовского априоризма верна, если ограничиться рамками "Критики чистого разума". Однако все те функции, которыми по мнению Мулуда не располагает кантовская система (формализация реальности и верификация формальной системы), выполняет рефлектирующая способность суждения, описанная Кантом в "Критике способности суждения". Рассмотрение действия этой способности будет одной из главных тем нашего исследования. вернуться в
текст
        7. По поводу одной из названных категорий, о дискурсе, необходимо дать некоторые объяснения уже сейчас - тем более этот термин вынесен в заголовок работы. Это слово часто используется в самых разных смыслах и нужно пояснить, что мы имеем в виду, используя его.
        В статье Ю.Степанова ([54], c.36-46) приводится (со ссылкой на различных авторов) целый ряд определений термина "дискурс". Не пытаясь анализировать их, приведем те, которые в нашей работе чаще всего будут подразумеваться. Таковым является понимание дискурса как последовательности связанных высказываний или "последовательности элементарных пропозиций, связанных между собой логическими отношениями конъюнкции, дизъюнкции и т.п." (с. 38). Такую последовательность, впрочем, с успехом можно было бы назвать и "рассуждением". Говоря о "математическом дискурсе", мы имеем в виду, что наряду с рассуждением (последовательностью пропозиций, речью) в наше рассмотрение должна быть также включена и графика, например, геометрические чертежи. Математический дискурс, следовательно, является для нас более широким понятием, чем математическое рассуждение.
        Другим возможным пониманием слова "дискурс" является связный текст или группа текстов (Степанов указывает, что такое понимание присуще англо-саксонской традиции - с. 36). Такое понимание также важно для нас. Понимая дискурс как текст, мы имеем в виду фиксацию последовательности высказываний, равно как и графических образов. Благодаря такой фиксации, дискурс становится предметом интерпретации и сам может быть рассмотрен как графическая конструкция. Это означает, в частности, что дискурс (рассмотренный в качестве текста) может сам стать предметом высказывания или другого дискурса.
        Степанов не считает удовлетворительными такие интерпретации термина "дискурс", находя их чрезмерно узкими. Он, в конечном счете, определяет дискурс как "язык в языке" ([54], c. 44), как достаточно широкий порождающий контекст множества текстов, определяющий и лексику, и синтаксис, и семантику. Мы, однако, будем избегать такой интерпретации для нас очень будет важно указать на серьезную дистанцию, разделяющую понятия "дискурс" и "язык". вернуться в текст
        ГЛАВА 1 Рассмотрение онтологического статуса предметов математики в некоторых философских системах
        К математическим образам и способам рассуждения философы, как правило, обращаются очень охотно.(См. примечание 1) Поэтому представить здесь сколько-нибудь полный обзор различных философских представлений о математических предметах не представляется возможным. Для этого пришлось бы написать нечто вроде курса истории философии. Задача настоящей главы состоит в том, чтобы выделить два принципиально отличных друг от друга подхода к математической онтологии, в рамках которых возникают различные определения существования. Прежде всего мы обратимся к пониманию природы математических объектов в философии Платона и Аристотеля. Их взгляды на математику явили своего рода парадигму для многих последующих поколений. Вполне естественно рассматривать их концепции математики как конкурирующие. Наверное можно легко проследить идущие через века "линию Платона" и "линию Аристотеля", связывая первую с реализмом, а вторую с эмпиризмом в подходе к математической онтологии. Нас, однако, больше будет интересовать тот общий подход, который был выработан совместно обоими философами и который, в известном смысле, может быть
противопоставлен трансцендентальному рассмотрению математического рассуждения.
        1 Платон и Аристотель: определение сущности
        Отношение Платона к математике естественно рассматривать в рамках проводимого им различения между подлинным бытием и становлением. Онтологический статус любой вещи определяется в терминах такого различения. Вещь существует в той мере, в какой причастна подлинному бытию, и в той же мере она может быть познана умом. То, что доступно чувству (и в той мере, в какой оно доступно чувству) не существует, а лишь становится, и о нем возможно лишь мнение, а не знание. Такого рода различение встречается во многих диалогах - сошлемся хотя бы на следующий пассаж из "Тимея": "Представляется мне, что для начала должно разграничить вот какие две вещи: что есть вечное, не имеющее возникновения бытие и что есть вечно возникающее и никогда не сущее. То, что постигается с помощью размышления и рассуждения, очевидно, и есть вечно тождественное бытие; а то, что подвластно мнению и неразумному ощущению, возникает и гибнет, но никогда не существует на самом деле" (Тимей, 27d-28a). Платон неоднократно обращался к этому противопоставлению и попыткам описать мир бытия и мир становления, но один интересный аспект описания
последнего он обнаружил в диалоге "Филеб". Там указывается, что, характеризуя данные чувств (т.е. высказывая мнение), мы всегда сопоставляем одно ощущение с другим такого же рода. Мы говорим о чувственно воспринимаемой вещи, что она "более теплая" или "более холодная" (чем, например, другая вещь или та же самая в другое время). В мнении мы всегда прибегаем к сопоставлению, выражая его словами "более" или "менее", "сильнее" или "слабее". Таким образом мы выстраиваем беспредельную шкалу отношений - ведь говоря "больше", мы всегда подразумеваем возможность другого, которое больше (сильнее, теплее), чем воспринимаемое сейчас. Мир становления предстает именно как набор отношений, где ничего не существует самостоятельно, но определяется лишь по сопоставлению с другим. Это какая-то беспредельная совокупность не имеющих отчетливого определения и ясного очертания предметов, которые можно лишь сопоставлять с другим, но нельзя рассмотреть каждый самостоятельно, "сам по себе" ("Филеб" 24b-d).
        Теперь противопоставления подлинного сущего и становящегося может быть описано в следующих терминах: первое познается и существует самостоятельно, само по себе, а потому и определяется само из себя, как независимая от другого сущность. Второе же лишь видится и мнится в совокупности, как нечто, не имеющее собственного определения, но предстающее обязательно совместно с другим. Оно не обладает никакими собственными характеристиками, оно лишь "более" или "менее", чем другое. Это элемент в беспредельной совокупности отношений, который если чем и определяется, то только отличием от другого. Существование, таким образом, оказывается тождественно самоопределенности. Чем в большей мере самостоятельна вещь, тем с большим правом она может быть признана сущей. В главах V-VII "Государства" Платон выстраивает целую иерархию сущностей, место которых тем выше, чем меньше нуждаются они в другом для своего определения. По поводу находящегося на вершине иерархии Блага (или Первообраза в "Тимее" или Единого в "Пармениде"), впрочем, уже оказывается невозможно сказать, что оно существует, поскольку, определяя все
остальное, оно оказывается недоступно никакому определению и познанию.
        Каково же место математических предметов в этой иерархии? Прежде всего, следует сказать о числах и счете. Разговор о них начинается тогда, когда возникает потребность установить в чувственном мире хотя бы какую-то определенность, т.е. начать не только ощущать вещи, но и размышлять о них. Для этого же необходимо прежде всего отделить одно ощущаемое от другого, выделить их в нечто (хотя бы отчасти) самостоятельное. "Если каждый из них один, а вместе их два, то эти два будут в мышлении разделены" ("Государство", VII, 524c)... и далее "Для выяснения этого мышление в свою очередь вынуждено рассмотреть большое и малое, но не в их слитности, а в их раздельности: тут полная противоположность зрению." Но разделять и обособлять предметы значит их пересчитывать, т.е. указывать сначала на одно, потом на второе, потом на третье. Мы уже не говорим о чем-то, что оно "более легкое" или "менее теплое". Мы выделяем его как нечто особенное в ряду пересчитываемых предметов. Ряд отдельных сущностей оказывается доступен мысли именно благодаря числу. Следовательно число есть начало (причина) самостоятельного
существования чувственно воспринимаемой вещи. Ее можно мыслить прежде всего благодаря количеству.
        Платон рассматривает обращение к числу как способ пробуждения мысли и ее обращения к подлинному бытию. Будучи причинами обособленного бытия вещей, числа поэтому интересны как сущие сами по себе, как самостоятельные сущности. По мысли Платона рассмотрение этих самостоятельных сущностей должно обратить ум к рассмотрению Блага. Последнее играет по отношению к числам ту же роль, какую они по отношению к пересчитываемым вещам - оно есть причина их бытия и благодаря ему их можно мыслить. Следовательно, если рассматривать существование как полную самодостаточность и определенность в себе, то и числа не существуют в полной мере. Их существование несамостоятельно и зависимо от другого (того, что не является числом).
        Похожее рассуждение Платон проводит и по поводу геометрии. От чувственного созерцания вещей мысль обращалась к числам.
        Точно также от чувственного созерцания чертежей (или геометрических построений, проводимых в практических целях - "Государство" 526d) геометр обращается к вечным сущностям - геометрическим фигурам самим по себе. Эти последние есть причины существования первых. Чертеж - нечто вспомогательное, нужное лишь для обращения к самостоятельной и независимо от всяких построений существующей вещи, постигаемой только размышлением. Однако и такие вещи не вполне самостоятельны - также как и числа. Их можно созерцать умом лишь благодаря Благу, которое есть причина их постигаемости и их существования. Платон утверждает, что если бы геометр имел возможность исходить из идеи Блага, как подлинного начала геометрических сущностей, то он вовсе не нуждался бы в чертежах, а мог бы постигать фигуры лишь умом ("Государство" 511e-d).
        Таким образом, онтологический статус математических предметов определяется их промежуточным (срединным) положением между становящимися и не сущими в полной мере вещами и абсолютно сущим (т.е. абсолютно независимым) Благом. Они могут быть рассмотрены как самостоятельные сущности и тем отличаются от становящихся вещей (которые явлены лишь через отношение к другому). Однако их рассмотрение зависит от ряда условий, т.е. они не мыслимы в полной мере сами по себе. Математическое рассуждение неизменно включает множественность изучаемых предметов и включает не только каждый такой предмет, но и отношения между ними. С другой стороны, мыслимость предметов математики возможна лишь благодаря Благу или Единому.
        Рассмотрение "бытия самого по себе", как основного определения существования, было совершенно иначе проведено Аристотелем. Однако само понимание существования является общим для обоих философов. Аристотель, однако, разработал систему терминов, в которых вопрос о существовании можно поставить более ясно, чем это делает Платон.
        О существовании, как о самостоятельном существовании, Аристотель начинает говорить в пятой книге "Метафизики" следующим образом: "Самостоятельное существование в себе приписывается тому, что обозначается через различные формы категориального высказывания: ибо на сколько ладов эти различные высказывания производятся, столькими путями они (здесь) указывают на бытие" ("Метафизика", V, 7). Эта отсылка к категориям заставляет немедленно вспомнить об основной категории, о сущности (oysia), к рассмотрению которой Аристотель тут же и переходит. В предварительном рассмотрении (в V книге) указывается два основных значения этой категории: подлежащее (ypokeimenon), т.е. то, что ни о чем не сказывается, но о чем сказывается все остальное; и "суть бытия", о которой Аристотель говорит, что она есть определение всякой вещи.
        Здесь уже выделен главный (не рассмотренный у Платона) аспект самостоятельности - особое место сущности в рассуждении. Сущность то, что ни о чем не сказывается. То, что сказывается о ней, зависимо от нее. Следовательно на сущность, понятую как подлежащее (в русском переводе используется также латинский термин "субстрат"), можно лишь непосредственно указать. Но благодаря такому указанию не возникает еще никакой определенности. Поэтому понимание сущности как подлежащего должно быть дополнено пониманием сущности как "сути бытия". Последний оборот есть попытка перевода вопросительного выражения: "to ti hn einai", которое можно, по-видимому,перевести как "что есть это". Следовательно "суть бытия" подразумевает,прежде всего, определение единичного предмета, на которой в данный момент указывается. Такое определение и должно включить всю полноту категориальных высказываний. Самостоятельно существует и определена как сущность вещь, рассмотренная именно в этой полноте. Все способы описания через категории обретают смысл именно как ответ на вопрос "что есть это?". Тогда они становятся "сутью бытия"
существующего предмета.
        Итак сущность, как категория, обозначающая самостоятельное существование, включает два момента: непосредственное указание на единичный предмет и полноту логического определения этого предмета. Нам сейчас нет необходимости подробно рассматривать, что должно включать такое определение, но один его аспект представляется особенно важным. Завершая VII книгу "Метафизики" (целиком посвященную "сути бытия"), Аристотель указывает, что суть бытия вещи "в некоторых случаях есть конечная цель". Вопрос "что есть это", подразумевает, следовательно и вопрос "для чего". В самом деле, самостоятельное существование требует завершенности, окончательной оформленности, которой далеко не всегда обладает предмет непосредственного указания. Суть бытия для груды камней и бревен не означает ее подробного описания. Никакого самостоятельного значения эта груда не имеет. Поэтому, говоря о ее сущности, мы должны описать дом, который будет из этого материала построен. Точно также сутью бытия для мальчика Аристотель считает взрослого человека, а для зерна - развитое растение. Сущность в полном смысле поэтому есть реализованная
цель или полная осуществленность (enteleceia). О ней Аристотель говорит, что она, будучи последней в порядке возникновения, является первой по сущности.
        Вопрос о существовании математических предметов может быть теперь сформулирован так: "Являются ли математические предметы сущностями?" Аристотель тщательно разбирает этот вопрос и дает на него однозначно отрицательный ответ. Он находит множество нелепостей, вытекающих из того, что за предметами математики (геометрическими фигурами и числами) признается самостоятельное существование. Изучая вопрос о существовании математических предметов, мы должны прежде всего исключить из рассмотрения общие понятия. Ни о каком треугольнике "вообще" (или кубе "вообще") не может быть здесь и речи, поскольку общее не может быть сущностью. Это Аристотель устанавливает в VII книге "Метафизики" и основным аргументом выступает то, что общее всегда сказывается о каком-нибудь подлежащем. Следовательно, речь может идти только о единичном, "вот этом" математическом предмете. Далее, разбирая основные геометрические образы точка, линия, плоскость и тело, - Аристотель устанавливает (XIII,2), что только последнее может в каком-то смысле рассматриваться как сущность. Ни точка, ни линия, ни плоскость сущностями быть не могут,
поскольку непосредственное указание на них возможно лишь тогда, когда они присутствуют в некотором теле. Из предположения об их самостоятельном существовании вне тела Аристотель выводит массу нелепостей. Но даже не касаясь подробностей его аргументации, можно легко видеть, что невозможно указать на точку иначе, как на границу некоторой линии, на линию - как на границу поверхности, на поверхность - как на границу тела. Иными словами точка, линия и поверхность не могут обладать даже относительной самостоятельностью, т.е. не могут рассматриваться как особые сущности, существующие в теле, подобно тому, например, как части существуют в целом. Они не обладают никакой самостоятельностью, ибо всегда подразумевают нечто другое, границей чего являются.
        Весьма пространное рассуждение приводит также Аристотель, доказывая невозможность самостоятельного существования чисел. Мы не будем здесь вникать в детали полемики, которую он ведет с пифагорейскими и платоническими концепциями, а приведем лишь один аргумент, релевантный логике нашего рассуждения. Число, очевидно, может быть представлено как составная сущность. Оно состоит из единиц, которые представляют его материю (XIII,8). Следовательно, число "по сущности" предшествует единице, составляя суть бытия для набора единиц. Причем эта "суть бытия" может в данном случае быть понята и как цель, как энтелехия и в этом смысле начало для единицы. Продолжив это рассуждение мы можем заключить, что также и всякое последующее число есть начало для любого из предшествующих ему в ряду чисел. Ведь оно всегда может быть представлено как состоящее из этих чисел. Но тогда никакое число не является энтелехией и сущностью, поскольку суть его бытия в другом. В поисках сути бытия для каждого числа (т.е. в поисках ответа на вопрос "что есть это число?") мы вынуждены идти в бесконечность. Иными словами суть бытия для
чисел невозможна, т.е. они не являются сущностями.
        Однако Аристотель не утверждает, что математические предметы не существуют вовсе. Не может же математика быть наукой о том, чего нет. Он лишь говорит, что для чисел и геометрических фигур существование нужно понимать в особом смысле. Определяя онтологический статус для предметов математики, Аристотель находит его таким же как для любой другой науки - всякая наука изучает нечто существующее, т.е. сущности, но не поскольку они сущности, а лишь в той мере, в какой эти сущности обладают интересующими данную науку свойствами. Так медицина изучает болезнь и здоровье, которые не существуют сами по себе, а являются свойствами человека. Но врача не может интересовать суть бытия человека, равно как и множество его разнообразных других свойств. Геометрия также изучает сущности, но лишь постольку, поскольку они являются телами, будучи телами ограничены поверхностями, содержат линии и точки. Арифметика выделяет иной аспект существования, рассматривая сущности с точки зрения их количества. Таким образом Аристотель вполне ясно определяет онтологический статус математических предметов - они являются свойствами
сущности, которые, не имея самостоятельного существования, могут, тем не менее, рассматриваться отдельно. Это отдельное от сущности рассмотрение порождает нечто вроде иллюзии самостоятельности, которая и может интерпретироваться как существование в математике.
        При очевидной противоположности взглядов Платона и Аристотеля на природу предметов математики, они все же разрабатывают некий общий подход к рассмотрению онтологического статуса этих предметов. Прежде всего они полагают самостоятельность и определенность через самое себя как критерий существования. Следовательно онтологический статус предмета состоит в его отношении к подлинно существующему. Интересно, что оба философа, в конечном счете, отказывают математическим предметам в высшем онтологическом статусе (если можно так выразиться), поскольку ни тот, ни другой не наделяют их полной самодостаточностью. Хотя Аристотель и выражает эту мысль гораздо решительней, чем Платон, однако и для Платона числа и геометрические сущности зависимы от идеи Блага и определены через него. Поэтому, на наш взгляд, не очень уместно называть платонизмом позднейшие философско-математические построения, рассматривающие мир математических объектов как самостоятельную реальность, изучаемую математиками.
        2 Сущность как мыслящая субстанция
        Идея сущности, как самостоятельного существования, изучение которого состоит в рассмотрении свойств, была воспринята европейской философией и очень надолго закрепилась в ней под названием "субстанции". (См. примечание 2) Ее уже в XVII веке определяли например так: "То, что существует само в себе и представляется само через себя, т.е. то представление чего не нуждается в представлении другой вещи, из которого оно должно было бы образоваться" ([52], с.1). В Новое время из определения этой категории выводились самые разные следствия. Представление о самостоятельном существовании интерпретировалось по-разному разными философами, но само это представление почти всегда оказывалось основой для определения онтологического статуса предмета. Однако иногда это определение делалось так, что представление о субстанции оказывалось в нем крайне размытым и, в конечном счете, несущественным. Мы разберем здесь две концепции математического существования, демонстрирующие серьезное переосмысление аристотелевского понятия сущности.
        Прежде всего нам необходимо обратиться к той онтологии, которая возникает в философии Декарта - подход к проблеме существования, разработанный этим мыслителем является и в самом деле очень неожиданным поворотом в понимании определения сущности. При этом, однако, (как мы попытаемся показать) он ни в чем не изменил букве аристотелевского определения. Сама идея субстанции т.е. сущего самого по себе, не сказывающегося ни о чем, о котором, однако, сказывается другое, зависящее от него, - сохраняется Декартом без изменений.
        Важно, что Декарт подходит к названной идее совершенно с другой стороны. Его задача - найти метод ясного и достоверного познания, который он характеризует так: "Весь метод состоит в порядке и расположении тех вещей, на которые надо обратить взор ума, чтобы найти какую-либо истину" ([22], с.91). Этот порядок расположения вещей обусловлен последовательностью обоснования. Суть познания (как она описана в "Правилах для руководства ума") состоит в сведении неизвестного к уже известному, т.е. более сложного и запутанного к более простому. Сведение же означает выведение истин о сложном из истин об уже известных простых вещах. Вещи выстраиваются в ряды так, что одни из них могут быть познаны на основании других (Правило VI). Так понятое познание требует введения некоторого беспредпосылочного начала, которое не из чего не выводится. Декартовское учение о методе необходимо предполагает установление самых простых вещей и самых простых истин.
        Пытаясь описать природу таких истин Декарт вводит различение между абсолютным и относительным. "Абсолютным я называю все, что заключает в себе искомую чистую и простую природу, например, все то, что рассматривается как независимое, причина, простое, всеобщее, единое, равное, подобное, прямое и другое в том же роде. Я называю абсолютное также самым легким для того, чтобы пользоваться им для разрешения вопросов" ([22], с. 93). Относительным называется то, что выводится из абсолютного. В характеристике относительного следует выделить один важный момент - оно "вносит в свое понятие нечто другое, что я именую отношениями; таковым (т.е. относительным) является все то, что называют зависимым, действием, сложным, частным, множественным, неравным, несходным, непрямым. Эти относительные вещи отдалены от абсолютного тем больше, чем больше они содержат подобных отношений, подчиненных друг другу" ([22], c. 93; курсив мой - Г.Г.). Таким образом правильный метод познания вновь приводит к прежней оппозиции самостоятельно существующего и определенного через самого себя и зависимого, нуждающегося для своего
определения в другом. Первое, названное здесь абсолютным, Декарт в дальнейшем прямо назовет субстанцией. Обратим внимание на воспроизведение платоновской характеристики того, что такой простотой и самостоятельностью не обладает: оно понимается как совокупность отношений, т.е. требует для своего определения различения и установления отношений с другим.
        Итак задача состоит в том, чтобы обнаружить самую простую идею, которая не требовала бы для своего определения никакого другого и не включала бы в себя никаких отношений. В "Правилах для руководства ума" в качестве такой идее устанавливается идея протяжения. Под последним понимается все, "что обладает длиной глубиной и шириной" (c. 136). Декарт утверждает: "Нет ничего, что легче бы представлялось нашим воображением" (Там же). Идея протяжения необходимо включает в себя представление тела. В воображении невозможно создать две различные идеи: тела и протяжения. Следовательно, одной из исходных идей всякого рассуждения является идея протяженного тела. Именно эта идея дает возможность установить существование чего-либо. Она обозначает субстанцию наиболее "ясно и отчетливо".
        В "Первоначалах философии" Декарт прямо связал идею субстанции с идеей существования. Из утверждения (названного им аксиомой), что у небытия не может быть никаких свойств, он выводит, что всякое мыслимое свойство должно предполагать за собой нечто, чему оно принадлежит. Иначе говоря, всякий мыслимый атрибут есть атрибут существующего, т.е. субстанции. Но саму субстанцию нельзя мыслить иначе, чем посредством ее атрибутов ([23], с. 335). Причем не все атрибуты равноправны. Есть атрибуты, которые указывают на субстанцию непосредственно и представляются наиболее отчетливо. Другие атрибуты или свойства суть производные от главных. Такой иерархии собственно и требует метод - место в иерархии определяется удаленностью от субстанции, т.е. степенью зависимости от другого, иначе говоря относительностью и сложностью. Субстанция, которая не нуждается ни в чем, но дает бытие своим атрибутам оказывается непознаваема сама по себе: "Субстанцию нельзя постичь лишь на том основании, что она существует" ([23], c.335). Последнее вполне согласуется с аристотелевским пониманием субстанции - она не сказывается ни о чем
как о подлежащем, т.е. не может быть непосредственно выражена ни в каком высказывании. (Потому что все, что выражено средствами языка о чем-то сказывается.)
        Первое место среди доступных восприятию и воображению атрибутов занимает, как мы видели, протяженность. Оттого и субстанция, о которой непосредственно сказывается этот атрибут, называется протяженной. В "Первоначалах" Декарт пытается осуществить специфический естественно-научный проект: вывести последовательно все свойства материального мира из одного главного - т.е. в полном соответствии с требованиями метода выстроить систему свойств субстанции, которые, постоянно усложняясь, определялись бы одно на основании другого. Такой проект (неважно насколько удачно он был реализован самим Декартом) есть очевидная попытка создания "математического естествознания". Математические предметы играют в декартовской онтологии особую роль. Можно сказать, что они фундируют всякое суждение о существовании любого материального предмета. Основанием для такого вознесения математики является именно рассмотрение протяженности как главного атрибута субстанции. Мы судим о вещи по ее свойствам. Но всякое свойство может быть рассмотрено как сущее (т.е. как свойство реально существующей вещи) лишь тогда, когда оно
произведено от протяженности. Значит, чтобы ясно судить о свойствах вещи (и быть убежденным в ее существовании), мы должны, прежде всего, рассмотреть ее как вещь математическую, точнее, как предмет геометрии. Последняя изучает протяженность "саму по себе" лишь поскольку она протяженность. Нельзя сказать, как это делает Аристотель, что математика изучает субстанцию, поскольку она протяженная, а другие науки (которые ничуть не хуже математики) изучают (столь же успешно) какие-то другие ее свойства. Все свойства суть модусы протяженности, а значит все науки зависимы от математики. Поэтому не объекты математики существуют в том смысле, что они суть некоторые способы представления сущности. Скорее наоборот: предмет оказывается сущностью в той мере, в какой он объект математики. Критерий существования вещи состоит в доступности ее математическому познанию. Онтологический статус вещи определяется тем, что она есть вещь протяженная.
        Однако возможность судить о вещи как о протяженной субстанции, т.е. на основании протяженности утверждать ее существование, пока еще нельзя с достаточной определенностью. Под такое суждение должна быть подведена еще одна основа, без которой оно остается достаточно зыбким. В этом легко можно убедиться, если рассмотреть как происходит рассуждение о протяженности, т.е., иными словами, как строится математическое рассуждение.
        В "Правилах для руководства ума" (Правило XIV) Декарт устанавливает, что первым и наиболее простым способом рассуждения о протяженности является измерение. Благодаря ему становится возможным судить о протяженных предметах и более сложно. Но чтобы измерять, нужно установить единицу измерения, к которой "одинаково приобщены все те вещи, какие сравниваются между собой" ([23], c. 140). Но и сама единица должна являть собой некое протяжение, точнее, протяженную вещь. Что это за вещь, зависит от природы измеряемого предмета. В разных измерениях единица может быть различной. Это может быть и квадрат, и куб, и треугольник. Протяжение, по мысли Декарта, присуще, в конечном счете, даже простой арифметической единице. Последнюю он предлагает изображать, например, в виде точки. Вообще, арифметические операции он мысли либо как операции с множествами подобных точек (наподобие пифагорейских фигурных чисел), либо как операции с отрезками. Таким способом и счет, и алгебраические правила должны оказаться производными от измерения протяженного тела.
        Таким образом, выбор единицы зависит от цели производимого измерения, природы измеряемого предмета и, возможно, от многих других обстоятельств. В конечном счете - это некий произвол того, кто занят измерением. Именно он должен выбрать единицу так, чтобы измеряемый предмет предстал ему наиболее ясно и отчетливо. Иными словами, протяженная субстанция оказывается как бы не вполне субстанцией. Ее представление зависит от того, кто о ней мыслит. Есть нечто (точнее некто), что можно назвать субстанцией с большим основанием, чем любое протяженное тело. Такой субстанцией является мыслящее Я, существование которого устанавливается с гораздо большей очевидностью, чем существование чего бы то ни было еще. Именно отнесенность к этой субстанции определяет онтологический статус любой вещи. Без представления о существовании "Я" нельзя вообще ничего достоверно помыслить как существующее. Как основание для протяженной субстанции необходима субстанция мыслящая. Эта последняя, что немаловажно, также не может мыслиться как совершенно независимая. Точнее, оставаясь совершенно независимой, она была бы лишена
возможности всякого знания (кроме того несомненного знания, что "Я существую"). Есть еще третья (впрочем, скорее первая) субстанция - Бог, благодаря которому мыслящий ум не только приобретает истинные знания, но и обретает уверенность в их истинности. Поэтому наряду с иерархией атрибутов возникает еще иерархия субстанций Бог, Я, протяженное тело - где каждая последующая субстанция субстанциональна благодаря отнесенности к предыдущей. Однако, место, которое занимает в этом ряду субстанций мыслящее Я, оказывается, если следовать указанию порядка расположения, не просто средним, но центральным. Именно эта субстанция оказывается беспредпосылочным началом знания, о котором мы говорили в начале параграфа. Порядок познания у Декарта совершенно не соответствует онтологическому порядку сущего. Ум (как этого хотел бы, например, Платон) не движется снизу вверх, устремляясь к высшему знанию, или сверху вниз, обосновывая низшее высшим. Он, если пользоваться этими топологическими метафорами, начиная из самого себя, как из центра, расходится в разные стороны.
        Иерархическое построение Декарта наталкивает на один своеобразный мыслительный ход, который, на наш взгляд, был весьма полно осуществлен Беркли. Из трех названных субстанций, последняя кажется не вполне, если так можно выразиться, субстанциональной. Конечно в логике, предлагаемой Декартом, требуется нечто существующее, чему должна быть приписана протяженность. Но то, как строится рассуждение о протяженности, не оставляет за ней уже никакой независимости от ума. Весь материальный мир, целиком дедуцируемый из геометрических истин, не может быть ничем, кроме умственной конструкции. Можно считать, что за всей этой конструкцией на самом деле существует некая субстанция, действительно обладающая всеми теоретически установленными атрибутами и модусами. Однако то, как эти атрибуты и модусы были найдены, не имеет к ней никакого отношения. Их установлением мыслящая субстанция (т.е. Я) обязана лишь себе и Богу. Иначе говоря, в стремлении к достоверному знанию ум действует (или, во всяком случае, должен действовать) так, как если бы никакой не зависящей от него протяженной субстанции не было.
        При всем несовпадении гносеологических принципов Декарта с философией Беркли у обоих философов присутствует некое общее представление о субстанциональности. Для Беркли объектом познания является не субстанция, а идея, которая существует только в уме и только в результате конкретного восприятия. Вещь представляет собой комплекс идей и, следовательно, также не существует нигде, кроме ума. Беркли пишет: "То, что говорится о безусловном существовании немыслящих вещей без какого-либо отношения к их воспринимаемости, для меня совершенно непонятно. Их esse есть percipi, и невозможно, чтобы они имели какое-либо существование вне духов или воспринимающих их мыслящих вещей" ([6], с. 172). Только мыслящая вещь может быть названа субстанцией. "Нет иной субстанции, кроме духа или того, что воспринимает" (Там же, с. 174 - курсив Беркли). Немыслящая вещь существует постольку, поскольку принадлежит субстанции. Здесь Беркли вроде бы повторяет мысль своих предшественников. Существование чего-либо определено лишь связью с субстанцией, т.е. тем, что не нуждается ни в чем и ни о чем не сказывается. Интересен, однако,
онтологический статус вещей. Он обнаруживается из рассмотрения вопроса о происхождении идей. Сами идеи не могут быть причиной своего появления или изменения. Образовывать их может лишь мыслящая вещь, т.е. их субстанция. Идеи возникают в своей субстанции (в уме), либо благодаря действию этой субстанции на себя (воображение), либо благодаря воздействию другой субстанции. Эта другая субстанция является основным источником идей и причиной их устойчивой связи в человеческом уме. Ее Беркли называет "вседержащим духом" - речь, следовательно, идет о Боге. Таким образом, сам факт существования чувственно воспринимаемых вещей оказывается фактом взаимодействия двух мыслящих (в терминологии Беркли - "духовных") субстанций. Человеческие представления о вещах, т.е. идеи, оказываются средством общения субстанций. Истинность знания о вещах и о внешнем мире эквивалентна правильности такого общения.
        Вполне естественно, что протяженность не может приобрести при таких посылках особого статуса (как у Декарта). Она - одно из многих воспринимаемых качеств. Точно также и математические объекты никак не выделены относительно иных. Тем не менее Беркли очень пристально изучает проблему математического существования, развивая при этом весьма оригинальную философию математики. (См. примечание 3) Мы не будем подробно останавливаться на этой стороне творчества Беркли. Заметим лишь, что его рассмотрение математики носит в основном критический характер. Поскольку именно математика может быть рассмотрена как наука об общих понятиях, не имеющих никакого чувственного представления, Беркли очень тщательно разбирает математические идеи, стараясь доказать, что в них нет ничего абстрактного или внечувственного.
        Однако один аспект подхода Беркли к математике мы считаем особенно важным. Выше мы говорили, что истинность знания означает некую "правильность" в общении двух субстанций. Ряд высказываний Беркли позволяет установить, о какой правильности идет речь. Прежде всего, рассматривая предмет арифметики, Беркли отрицает всякий смысл в попытках увидеть в ней специальное знание о числах, как особых объектах. Он утверждает, что если мы "ближе вникнем в собственные мысли", то "станем смотреть на все умозрения о числах, лишь как на difficiles nugae, (См. примечание 4) поскольку они не служат практике и не идут на пользу жизни" ([6], c. 228; курсив наш - Г.Г.). Далее Беркли прямо утверждает, что наука о числах "становится узкой и пустой, когда рассматривается только как предмет умозрительный", но становится осмысленной, будучи "всецело подчинена практике" (Там же). Такой подход к арифметике может быть отчасти оправдан тем, что по мнению Беркли у нее вовсе нет собственного предмета, а все ее выводы в действительности относятся только к пересчету вещей. То что мы называем числами суть лишь знаки, облегчающие
процедуру счета (с. 229). Однако требование полезности Беркли предъявляет и к геометрии, которая все же имеет собственную предметную область - протяженные вещи, воспринимаемые чувствами. Однако и здесь осмысленным признается лишь такое рассуждение, которое имеет практическую ценность. Беркли вполне ясно предлагает вовсе отказаться от всяких исследований, касающихся проблем бесконечной делимости и исчисления бесконечно малых величин, поскольку не видит в этом отказе никакого вреда для человечества (с. 235).
        Вопрос о вреде и пользе, однако, представляет специальный интерес, поскольку речь здесь вовсе не идет о примитивной утилитарности. Можно понимать под практической пользой способ такого обращения с вещами, которое позволяет людям лучше (удобнее, проще, комфортнее) чувствовать себя в жизни. Но важно помнить, что вещи, с которыми надо обращаться, суть результаты воздействия внешней субстанции, "вседержащего духа". Следовательно, правильное поведение в жизни, адекватное обращение с вещами, приводящее к благим последствиям для обращающегося, есть по существу способ общения с названным духом, т.е. его понимание и следование его воле. Практика оказывается, согласно известному выражению "критерием истины", но не потому, что приводит к адекватному отражению законов материального мира, а потому, что дает возможность удостовериться в правильности взаимопонимания двух индивидов (правда далеко не равноправных в своем общении). Поэтому к практике непосредственно относится нравственное поведение. В одном из пассажей, касающихся необходимости практической пользы математических исследований Беркли призывает ученых
обратится к исследованию "таких вещей, которые ближе касаются нужд жизни и оказывают прямое влияние на нравы" (с. 235; курсив наш - Г.Г.).
        Беркли высоко ценил идеал правильного общения в человеческом сообществе, живущем согласно воле провидения, т.е. сообразно установленным Богом нормам морали. "Если же мы допустим существование сообщества разумных созданий, действующих под надзором Провидения, совместными усилиями способствующих достижению единой цели - благу и пользе единого - и согласующих свои поступки с утвержденными отчей мудростью Божества законами;...если мы все это допустим, то сделаем предположение восхитительное и радостное." ([8], c. 90). Этот проект идеального общества позволяет иначе взглянуть на роль математики и естественных наук. Познание вещей, так, как они действительно существуют, есть понимание тех воздействий, которые Бог оказывает на человека. Следовательно, истинное естественнонаучное и математическое знание ведет, в конечном счете, к установлению подлинно благих правил и норм взаимодействия "разумных агентов". Онтологический статус предметов математики определяется поэтому не их объективной, но их интерсубъективной (См. примечание 5) значимостью. Первоначальная посылка Беркли "Существовать, значит быть
воспринимаемым" - может быть, по нашему мнению, прочитана так: "Существовать, значит способствовать правильному общению разумных существ."
        3 Математическое существование в философии Канта. Предварительное рассмотрение
        В интерпретации Беркли субстанция не есть идея, а потому не может быть предметом познания. Иными словами, субстанция - только субъект, но не объект знания. Осмысление проблемы в субъект-объектной терминологии в полной мере осуществлено Кантом, который, отчасти, вернул слову "субстанция" аристотелевский смысл.
        То, что Декарт и Беркли (а также и другие философы Нового времени) называли мыслящей субстанцией, Кант назвал субъектом, подробно рассмотрев его логическую структуру. При этом он настаивал, что мыслящее Я нельзя называть субстанцией. Последняя есть категория, предназначенная для того, чтобы судить об объекте мысли. Эта категория позволяет судить о явлениях, как о способах обнаружения некоторого неизменного основания. "Схемой субстанции служит устойчивость реального во времени, т.е. представление о нем, как о субстрате эмпирического определения времени вообще, который, следовательно, остается, тогда как все остальное меняется" (B183 - ссылки на "Критику чистого разума" делаются в соответствии с пагинацией второго издания (1787 года), которая дается в большинстве русских переводов). Субстанция, таким образом, есть устойчивое основание того, о чем ведется рассуждение. Всякое суждение сказывается о субстанции, как о носителе выражаемых этим суждением свойств. Такая трактовка в самом деле в чем-то близка Аристотелю. Однако особого рассмотрения требует вопрос о том, как производится суждение и как, в
конечном счете, строится рассуждение.
        Суждение о предмете означает синтез, производимый согласно априорным условиям. Такой синтез состоит в установлении субъектом мышления связи данных представлений. Связь представлений в суждении не может быть дана, а может быть только создана субъектом (B130). В Главе 3 мы подробно разберем вопрос о синтезе в применении к математике. Сейчас лишь обратим внимание на то, что Кант выделяет два рода синтеза - "интеллектуальный" и "фигурный" и, соответственно, два плана дискурса: рассудочный синтез общих понятий и синтез способности воображения, состоящий в конструировании единичных предметов.
        Рассудочное мышление состоит в создании субъектом единства в своих представлениях. Поэтому предмет, чтобы стать объектом мышления, должен быть сконструирован субъектом. (См. примечание 6) Это конструирование может быть понято в том числе и в самом прямом смысле, как сборка конструкции из набора элементов. Последнее относится прежде всего к математике. Алгебраическая формула, равно как и геометрическая фигура, становятся объектами рассуждения, будучи сконструированы продуктивной способностью воображения, т.е. собраны в пространстве из более простых фигур, формул или знаков. Поэтому всякий математический предмет существует постольку, поскольку он сконструирован. Вопрос о существовании, таким образом, никак прямо не связан с проблемой субстанциональности. Существование определено деятельностью субъекта. Кант очень жестко развел понятия субъекта и субстанции. Первый описан им как действующее сознание, которое продуцирует предметы своего знания, обнаруживая в этих, созданных им предметах свое собственное единство. Это единство - единство деятельного 'Я' или "трансцендентальное единство апперцепции"
никак не может быть названо субстанцией, хотя бы даже и мыслящей. Нельзя путать два вопроса: кто рассуждает и о чем ведется рассуждение. Субстанциальность может быть приписана только предмету, который конструируется в ходе рассуждения и при этом обнаруживается как существующий. Но тот, кто рассуждает не может конструировать сам себя.
        Итак, онтологический статус предмета определяется не его отношением к субстанции, а его отношением к субъекту. Деятельность субъекта является критерием существования. Эта деятельность происходит в рамках, заданных ее трансцендентальными условиями, к которым, прежде всего, относятся пространство и время. Сама деятельность разворачивается во времени, как последовательность продуктивных синтетических актов. То, что появляется в результате этих актов, представляется как существующее в пространстве. Последнее верно для любого объекта, в том числе и для математического. Однако математика оказывается основой всякого, по крайней мере научного, мышления. Всякий объект существует, поскольку существует в пространстве. Но поскольку он существует в пространстве, он существует как протяженный предмет, и судить о нем нужно, прежде всего, как о предмете геометрии. "Все явления суть величины и притом экстенсивные величины" (B203; курсив Канта). Отчасти Кант повторяет здесь Декарта - во всяком случае и для него всякое естествознание должно быть прежде всего математическим естествознанием. Всякий предмет
конструируется прежде всего как геометрическая фигура или тело. Коль скоро существовать значит быть сконструированным (причем сконструированным в пространстве), то любой предмет существует только в качестве математического. Вне математики невозможно никакое знание и никакое существование.
        Онтологический статус предметов математики состоит, таким образом, в том, что они оказываются продуктами деятельности трансцендентального субъекта. Математическое творчество последнего несколько напоминает работу некого мыслительного автомата, производящего свои объекты без всякой определенной цели. Поэтому нам представляется недопустимым ограничивать рассмотрение математической онтологии Канта одной лишь первой "Критикой". Мы ограничимся здесь анализом лишь небольшого фрагмента из "Критики способности суждения", однако этот фрагмент, на наш взгляд, позволяет ввести в математический дискурс мотив целесообразности, а также увидеть нечто новое в кантовском понимании математической онтологии. Правда, в отличии от "Критики чистого разума", изобилующей математическими примерами, "Критика способности суждения" обращается, по преимуществу, к сферам, далеким от математики. Тем не менее установленные там принципы отнюдь не безразличны для интерпретации математической деятельности.
        Понятие цели в деятельности субъекта вводится при анализе рефлектирующей способности суждения. Взаимодействие рассудка со способностью воображения сводится к тому, что воображение конструирует объект сообразно общему правилу, предписанному рассудком. При этом происходит подведение конструируемого единичного предмета под уже имеющееся правило. Однако далеко не всегда правило имеется как нечто окончательно сформулированное. "Существует такое многообразие форм природы, столько модификаций общих трансцендентальных понятий, остающихся не определенными теми законами, которые априорно дает чистый рассудок,...что для всего этого также должны быть законы" ([28], с. 50). Такой закон должна дать способности воображения рефлектирующая способность суждения, которая поднимается от имеющегося особенного к общему. Кант относит такую деятельность к эмпирической сфере, к описанию "законов природы". В [33] деятельность рефлектирующей способности суждения представлена как выдвижение объясняющих гипотез для ряда наблюдаемых эмпирических фактов. Так, утверждение, что планета движется по эллиптической орбите, есть
обобщение рефлектирующей способности суждения, сделанное по отношению к ряду эмпирических наблюдений за движением планеты. Важно иметь в виду, что такое обобщение не имеет ничего общего с абстрагированием. Понятие эллипса не содержится в бессвязном наборе цифр, определяющих положение планеты в разные моменты времени. Очевидно, что речь здесь вновь должна идти о синтезе, основанном на априорных способностях субъекта. Этот синтез отличается от простого синтеза способности воображения тем, что содержит момент целесообразности. Он производится для того, чтобы объяснить ряд полученных фактов. Не следует упускать из виду, что полученный факт также есть результат некоторого конструирования, т.е. объект рассудка и способности воображения. В свою очередь гипотеза рефлектирующей способности суждения также может стать объектом дальнейшего обобщения. Эллиптические орбиты, рассмотренные как данные (ранее сконструированные) объекты, получают свое объяснение, благодаря более общей гипотезе - законам ньютоновской механики.
        Можно рассмотреть два аспекта деятельности рефлектирующей способности суждения. С одной стороны - это создание теории. Гипотеза, обобщающая ряд фактов, представляет собой постулат, из которого эти факты получаются в виде его логических следствий. С другой стороны, такая гипотеза есть также результат конструирования. Последнее особенно ясно в примере с законом Кеплера: представление об эллиптической орбите очевидно требует работы способности воображения. Однако без воображения невозможно создать и эмпирические законы иного рода. В математическом естествознании эти законы всегда записываются в виде формул, т.е. в виде знаковых конструкций, создаваемым сообразно определенным правилам. Их построение представляет собой деятельность, которую Кант описал как символическое конструирование (B745). Но такого же рода конструирование представляет собой и вывод одних формул из других - а именно к этому сводится обоснование наблюдаемых фактов в рамках теории. Следовательно деятельность рефлектирующей способности суждения можно рассмотреть как построение определенной структуры, для которой ранее установленные
факты (т.е. ранее сконструированные объекты) являются элементами. (См. примечание 7)
        Если в "Критике чистого разума" Кант рассматривает лишь способ синтеза суждений, то в "Критике способности суждения" речь идет о решении естественнонаучной проблемы. Оно (решение) состоит в том, чтобы представленные в виде бессвязного агрегата объекты были объединены в рамках целостной структуры. Именно в этой структуре каждый объект должен получить свое место и свое назначение. Поэтому здесь и реализуется принцип целесообразности. Очень важно иметь в виду, что действие способности суждения не является простым формулированием общего правила для ряда единичных объектов (или частных фактов). Нужно не просто сформулировать гипотезу, но сформулировать ее так, чтобы все требуемые факты выводились из нее как частные случаи. Эта процедура вывода должна предугадываться способностью суждения наряду с самим общим правилом. Иными словами способность суждения есть способность предвидеть структуру рассуждения как целого.
        Едва ли, кстати, можно утверждать, что столь сложная работа сводится только к действию способности суждения. Очевидно, что наряду с ней здесь действуют и другие способности, а именно рассудок и воображение. Решение естественнонаучных проблем явно подразумевает ту "свободную игру" познавательных способностей, которую Кант связывал с принципом удовольствия (см. [28], c. 85)
        Все сказанное мы, вслед за Кантом, отнесли к сфере исследования природы. Однако в той же мере это верно и для математики. Любая математическая задача представляет собой изложение фактов, никак, на первый взгляд, между собой не связанных. Решение задачи состоит в том, чтобы обнаружить и построить некоторую единую конструкцию, в которой все наличные факты получают свое место. Это особенно очевидно при решении геометрических задач, в которых необходимо дополнительное построение, приводящее к созданию более сложной конфигурации, из которой однако легко усматривается ответ на вопрос задачи. Но то же самое происходит и при решении любых задач, где в роли такой конфигурации выступает алгебраический вывод или более сложный математический текст, включающий как знаковые, так и графические элементы.
        Уместность описанной гипотетико-дедуктивной процедуры при решении математических задач была довольно подробно описана Д. Пойа в [44] и [45]. На множестве примеров (как учебных, так и исторических) в этих книгах показывается, что важным моментом решения задачи является индуктивная догадка, обобщающая и связывающая воедино множество установленных ранее фактов. Едва ли многие математические теоремы появляются в результате чистого дедуктивного вывода из аксиоматически заданных посылок. Чаще они рождаются в виде догадок, необходимых для решения задачи (или ряда задач). С другой стороны, сколь бы частной ни была задача ее решение является чем-то вроде мини-теории, где ответ оказывается следствием из установленного в виде гипотезы постулата. Немаловажное отличие от естественнонаучной теории состоит в том, что сам этот частный постулат нуждается в доказательстве.
        Все сказанное позволяет дополнить приведенное ранее определение существования. Математический объект существует постольку, поскольку сконструирован. Однако математика не есть простое конструирование объектов. Она представляет собой решение задач, а потому каждый объект появляется в ней в рамках более общей структуры, продуцируемой познавательными способностями для того, чтобы получить такое решение. Значит объект существует, поскольку встроен в такую структуру в виде ее элемента. Сама структура предстает как конструкция способности воображения и о ней также может быть поставлен вопрос - в рамках какой еще более общей структуры она существует. Разум не может представить, как налично реализованную, совокупность структур, последовательно включенных друг в друга в виде бесконечной конструкции. Поэтому вопрос о существовании требует для своего полного разрешения введения регулятивных понятий. В математике поэтому неизбежны представления о бесконечных совокупностях, в рамках которых существуют частные математические объекты. Для естествознания таким регулятивом выступает понятие о мире, в котором может
быть реализовано сколь угодно много теоретических структур.
        Необходимо, впрочем, иметь в виду, что в "Критике способности суждения" нет речи о существовании, тем более о существовании математических объектов. Кантовское решение проблемы существования связано с рассмотрением категорий модальности, чем мы подробно займемся в Главе 3. Но сразу можно сказать, что это рассмотрение не будет полным без учета принципа целесообразности. С другой стороны, мы вплотную подошли к тому пониманию существования, которое связали в Введении с именем Кассирера. В рамках нашей интерпретации кантовского определения рефлектирующей способности суждения всякий объект считается существующим тогда, когда определено его место в некоторой структуре, разворачиваемой согласно установленному правилу (логической форме). Более того, теперь можно яснее сказать о какой структуре должна идти речь - это структура теории, создаваемой на основе индуктивной догадки и объясняющей ранее установленные факты. (См. примечание 8) Впрочем, предъявление структуры не является еще достаточным условием для утверждения о существовании элементов. Необходимо указать особые свойства такой структуры - ниже мы
попытаемся разобрать, как решал эту проблему Гильберт.
        Примечания к Главе 1
        1. Интересный и весьма скрупулезный анализ роли математических образов в философском мышлении дан В.А.Шапошниковым в [60]. вернуться в текст
        2. Латинский перевод аристотелевского термина ousia. вернуться в текст
        3. Подробное рассмотрение философии математики Беркли предпринято в книге Джессефа [73]. Там, в частности, разбирается теория "репрезентантов" (термин Джессефа), развиваемая Беркли как альтернатива теории абстракции. Речь идет о намерении Беркли доказать, что в математике нет никаких общих понятий, абстрагированных от единичных предметов, а есть лишь те же самые единичные предметы (т.е. идеи), которые выступают в рассуждении как представители целых классов подобных им идей. вернуться в текст
        4. Пустяковые трудности. вернуться в текст
        5. Следуя терминологии Беркли, лучше было бы сказать "интерсубстанциональной". вернуться в текст
        6. Объектом называется то, что представлено мышлению как нечто мыслимое, точнее представлено мыслящим субъектом самому себе. "Объект есть то, в понятии чего объединено многообразие данного наглядного представления" (B137; курсив Канта). Следовательно объект всегда представляет собой результат конструирования.Именно этого значения названного термина мы и будем придерживаться в дальнейшем. В "Критике чистого разума" наряду со словом "объект" (Objekt) используется и слово "предмет" (Gegenstand), для которого не дается более или менее ясного определения. По всей видимости "предметом" можно назвать и то, что не представляется как результат конструирования. Существует мнение ( [74], с. 268), что Кант не проводит никакого ясного различения между двумя названными терминами и пользуется ими как взаимозаменяемыми. Леппакоски замечает по этому поводу, что в английском переводе "Критики чистого разума" оба слова совершенно правомерно передаются одним и тем же термином "object". Тем не менее нам представляется, что если "объектом" можно назвать только нечто реально возможное, т.е. производимое продуктивной
способность воображения, то термин предмет допускает более широкое использование. Например, "множество всех действительных чисел", которое невозможно сконструировать, допустимо называть предметом, но не объектом. вернуться в текст
        7. Связь категорий объект и факт нуждается в дополнительном рассмотрении. Мы проведем его в Главе 3 при сопоставлении категорий действительности и необходимости. вернуться в текст
        8. Причем факты могут служить для фальсификации теории. Последнее означает, что построенный при заданных посылках объект не может быть "вписан" в теоретическую структуру. На связь попперовской идеи фальсификации с "Критикой способности суждения" указано также в [33]. Впрочем, эта связь должна быть предметом особого исследования. Равно как и связь представлений Поппера о строении научной теории с развертыванием категории "действительности" у Кассирера ([32],c. 349-400). Оба эти мыслителя строят очень похожие конструкции, связывающие частные факты с общей гипотезой. вернуться в текст
        ГЛАВА 2 Интерпретации существования в математике
        1 Основные стратегии доказательства существования
        Важной задачей, которую мы должны решить, проводя исследование онтологии математического дискурса, состоит в выяснении тех традиционных способов, которыми математика устанавливает существование своих предметов. Для этого следует обратить внимание на математические предложения, утверждающие о чем-либо, что оно "существует". Рассмотрение доказательств таких предложений позволяет понять, в каком смысле употреблено в нем это слово. Способ доказательства существования проясняет, прежде всего, интерпретацию существования в том или ином утверждении.
        Если попытаться разобрать основные математические тексты (т.е. тексты, производимые математиками разного класса и уровня и читаемые в сообществе, имеющем к математике какое-либо отношение), то при самом поверхностном анализе можно увидеть три способа доказательства существования и, соответственно, три способа определить онтологический статус предмета исследования.
        Первый (и, возможно, наиболее распространенный) способ доказательства состоит в непосредственном построении объекта, в существовании которого предстоит убедиться. В качестве классических областей применения такого рода доказательств принято указывать евклидову геометрию, алгебру и, отчасти, теорию чисел [18]. Однако, важно понимать, что его употребление вполне естественно и для вполне "нефинитных" областей, например, для функционального анализа. Чтобы обратить внимание на некоторые важные особенности такого способа доказательства, уместно обратиться к примеру. Одна из известных теорем функционального анализа утверждает, что для любого сжимающего отображения произвольного полного метрического пространства в себя существует единственная неподвижная точка этого отображения. Это утверждение доказывается так: в метрическом пространстве выбирается произвольная точка, данное сжимающее отображение применяется сначала к этой точке, потом к получившемуся в результате его применения образу этой точки, потом к образу образа и т.д. Выясняется, что возникающая при этом последовательность имеет предел и этот
предел - точка пространства, не изменяющаяся при применении к ней данного отображения.
        Как в формулировке этой теоремы, так и в ее доказательстве фигурируют лишь общие термины. Доказательство, однако, проведено так, что все общие термины в нем можно заменить на единичные. Так, задав некоторое полное метрическое пространство (допустим, фиксированный отрезок прямой линии), т.е. указав вполне определенный единичный предмет, обладающий всеми требуемыми свойствами, и задав какое-то конкретное сжимающее отображение на нем, мы можем, пользуясь прописанной в доказательстве схемой, указать на некоторый, также вполне определенный, единичный предмет, обладающий всеми требуемыми свойствами (т.е. являющийся неподвижной точкой отображения). Указание единичного предмета - важнейший момент такого рода рассуждений. Хотя само оно и проводилось как бы абстрактно, т.е. безотносительно каких-либо единичностей, однако возможность работы с ними и составляет его реальный смысл. Любой, включенный в рассуждение индивидуальный предмет получает в ходе его полную определенность (ясность онтологического статуса) в силу его отличимости от любого другого предмета, указанного каким-либо иным способом. Итак, о
каком-либо предмете можно сказать, что он существует, если приведена конечная схема, которая, будучи применена к указанному вполне определенному объекту (или конечному набору объектов), приводит к построению рассматриваемого предмета. Тот факт, что схема, на которую мы ссылались в нашем примере, содержала построение бесконечной последовательности, еще не нарушает конструктивности определения существования. Предел последовательности есть вполне определенный объект, построение которого, при заданной сходящейся последовательности, вовсе не требует таких запредельных абстракций, как актуальное предъявление всей бесконечной последовательности. Выяснить, например, что последовательность xn = 1/2n сходится к 0, можно с помощью легко завершаемой процедуры. Последнее верно, конечно, не для любой последовательности. Но в разобранном нами примере такую последовательность указать можно. (Например, если задать отображение, которое каждой точке отрезка будет ставить в соответствие точку, расположенную в два раза ближе к фиксированному концу отрезка.) Но именно эта возможность и важна для определения существования в
конструктивном смысле. Слово "существует" в рамках рассмотренной нами интерпретации должно быть прочитано именно как "существует единичный предмет, на который можно непосредственно указать".
        Конечно же математическое рассуждение не ограничивается такими, завязанными на вполне определенный единичный предмет, построениями. Математический анализ постоянно имеет дело с такими предметами, которые не могут быть вполне определены с помощью конечной процедуры построения. Самый характерный пример - иррациональное число, которое определяется либо как последовательность рациональных чисел, либо как сечение на множестве рациональных чисел. В любом случае такое определение предмета предполагает предъявление какой-то бесконечной совокупности и о его существовании уже невозможно говорить в рассмотренном выше смысле. Тем более это невозможно, если речь идет о последовательностях или о бесконечных множествах вещественных чисел. Названные предметы, тем не менее, весьма активно изучаются в анализе. В математике принято два способа говорить о существовании этих неконструируемых предметов.
        Первый неконструктивный способ интерпретации существования связан с законом исключенного третьего. На нем основаны все доказательства от противного. Приведем еще один пример. Одна из центральных теорем анализа утверждает, что если последовательность монотонна и ограничена, то она имеет предел. Доказательство этого факта часто проводят, предположив, что данная последовательность нефундаментальна (т.е. не удовлетворяет критерию Коши). Из этого предположения легко выводится, что последовательность в таком случае и не ограничена, что противоречит условиям теоремы. Далее же на основании закона исключенного третьего утверждается фундаментальность рассматриваемой последовательности, а соответственно и наличие предела. Никаких указаний на какое-либо конкретное число, могущее быть пределом последовательности, равно как и на способ его вычисления, нет ни в формулировке, ни в доказательстве теоремы. Мы, конечно, можем усмотреть здесь какую-то схему, которая может быть применена к заданной последовательности, т.е. к определенному единичному предмету. Но к построению другого единичного предмета (в
существовании которого и требуется удостовериться) предложенная схема не приведет. Это предмет останется предметом гипотетическим. Нет никаких реальных критериев для того, чтобы отличить его от какого-либо другого. Брауэр, о взглядах которого на проблему существования мы будем более подробно говорить в дальнейшем, считал, что философским основанием для такого типа рассуждений является реализм (или "платонизм"), неправомерно перенесенный на математические объекты [65]. Утверждая, что бесконечная последовательность (которую мы не построили и не можем построить) должна быть либо фундаментальной, либо нефундаментальной, мы верим в некоторое действительное положение дел, существующее независимо от нас в каком-то идеальном мире. Наше суждение об этом положении дел может быть истинным или ложным, сама же реальность, никак не связана с нашими собственными действиями. Брауэр считал неправомерным использование закона исключенного третьего потому, что по его убеждению математические объекты и их отношения не есть независимая от субъекта реальность, о которой можно лишь истинно или ложно судить, а есть продукт
собственной деятельности субъекта. Можно не принимать такую точку зрения, но трудно, по-видимому, отрицать, что онтологический статус предмета, определенный подобным образом, остается довольно сомнительным. Мы начинаем оперировать с предметом, присутствие которого непосредственно не удостоверено. Можно сказать, что такой предмет не существует в подлинном смысле, а как будто существует. Не имея возможности предъявить его в нашем рассуждении, мы рассуждаем так, как если бы он существовал (как если бы был построен). Установив существование с помощью закона исключенного третьего, часто имитируют непосредственное указание на этот предмет, вводя для него имя, участвующее далее во всех рассуждениях. Другой способ понимания существования в отношении предметов математики также связан скорее с предположением о существовании (по крайней мере, если сопоставлять его с конструктивным предъявлением индивида). Введение целых классов предметов осуществляется с помощью мыслительного хода, подобного тому, который был предпринят при введении отрицательных чисел для учета расходов и долгов в разных финансовых операциях
или введении иррациональных (а затем и комплексных) чисел при решении алгебраических уравнений. Всякий раз в рассуждение вводится некий квази-объект, который не указывается конструктивно. Про него лишь говорится, что он может участвовать в различных манипуляциях с числами наравне с числами "настоящими" (например, рациональными). Для него придумывается специальный значок, который подставляется в формулы. Причем результатом применения к нему этих формул оказывается вполне определенное, вычисляемое число. Сам же этот квази-объект по существу оказывается отождествлен с тем значком, который подставляется вместо него в формулу.
        Что же позволяет считать такие квази-объекты существующими. Здесь оказывается уместна та интерпретация существования, на которой настаивал Пуанкаре: критерием существования является свобода от противоречия. Все те формулы, в которые подставляются введенные для таких предметов значки, не должны противоречить друг другу. Более ясным этот критерий становится при обращении к аксиоматическому построению математики. Паункаре писал: "Если мы ... имеем систему постулатов, и если мы можем доказать, что эти постулаты не заключают в себе противоречия, то мы вправе рассматривать их как определения одного из тех понятий, которые фигурируют в этой системе предложений" ([48] с.373). Еще яснее такая интерпретация становится видимо, если прибегнуть к более поздней терминологии. Предмет существует, если он оказывается термом в непротиворечивой теории. Такой подход к проблеме существования сразу же ставит проблему непротиворечивости. Мы обсудим это подробнее, когда будем разбирать взгляды Гильберта.
        Нашей ближайшей задачей будет углубление названных здесь интерпретаций существования. Каждая из них имеет достаточно солидную философско-математическую базу. Построение такой базы требует выявления ряда предпосылок, неявно присутствующих в любом математическом дискурсе. Сознательное прописывание такого рода предпосылок (т.е. работа, которую можно назвать уже чисто философской) не раз предпринималось ведущими математиками. К анализу взглядов некоторых из них мы сейчас обратимся.
        2 Концепция существования у Кантора
        В работах Георга Кантора есть ряд пассажей, в которых он довольно точно объясняет, что следует считать существующим в математике. Обратим внимание, прежде всего, на следующее высказывание.
        "Во-первых, мы можем считать целые числа действительными (здесь, очевидно, имеется в виду "действительно существующими" - Г.Г.) постольку, поскольку они занимают на основе определений вполне определенное место в нашем рассудке, вполне ясно отличаются от всех остальных составных частей нашего мышления, находятся к ним в определенных отношениях и, таким образом, определенным образом видоизменяют субстанцию нашего духа." Такого рода реальность Кантор называет "интрасубъективной" или "имманентной", которую он отличает от реальности "транссубъективной" или "транзиентной". Последняя приписывается числам "постольку, поскольку их приходится рассматривать как выражения или отображения процессов во внешнем мире, противостоящем интеллекту". Внешний мир, что немаловажно, включает как "телесную", так и "духовную природу". "Для меня - пишет далее Кантор - не подлежит никакому сомнению, что оба эти вида реальности всегда совпадают в том смысле, что какое-нибудь понятие, принимаемое за существующее в первом отношении, обладает в известных, даже бесконечно многих отношениях транзиентной реальностью." ([31], c.79)        Итак "транзиентная реальность", будучи трансцендентным интеллекту внешним миром, все же совершенно адекватно представлена определенными понятиями. Эта определенность и должна служить своего рода критерием существования. Поскольку основные усилия Кантора направлены на обоснование реальности объектов создаваемой им теории бесконечных множеств, то речь должна идти главным образом об определенности этих множеств и их элементов. Если нам удастся установить их ясную "отличимость от всех остальных составных частей нашего мышления", то мы можем быть уверены, что они совершенно адекватно представляют предметы внешнего мира (причем, скорее "духовной" нежели "телесной" природы - поскольку речь идет о бесконечных множествах). Поэтому математика "при развитии своих идей должна считаться единственно лишь с имманентной реальностью своих понятий и не обязана вовсе проверять также их транзиентную реальность" (с. 79-80; курсив Кантора). Здесь уместно следующее рассуждение, проводимое Кантором несколько ранее. "Многообразие (совокупность, множество) элементов,принадлежащих любой сфере понятий, я называю вполне
определенным, если на основе его определения и вследствие логического принципа исключенного третьего становится возможным рассматривать внутренне определенным как то, является или не является его элементом любой объект из этой сферы понятий, так и то, равны или нет друг другу два принадлежащих множеству объекта, несмотря на формальные различия в способах их задания." ([31], c. 50-51; Курсив Кантора).
        Выяснять принадлежит ли данный предмет указанному множеству, а также устанавливать его тождественность с другим предметом на основании закона исключенного третьего, можно лишь предположив у него наличие определенных свойств. Последнее означает, что предмет рассматривается как сущность, могущая выступать в качестве субъекта суждения. Такой предмет должен быть введен в рассуждение с помощью родо-видового определения, т.е. опять же через указание его существенных свойств. Следовательно Кантор склонен рассматривать множество именно как класс сущностей объединенных на основании определенной общности признаков. Поскольку в его теории сами множества могут рассматриваться как элементы других множеств, то значит и сами эти классы следует считать сущностями. Любая сущность-множество задается с помощью набора определяющих свойств своих элементов, через которые устанавливаются также и свойства самой этой сущности.
        Объекты своей теории Кантор вводит с помощью отвлечения общих признаков, присущих классу сходных предметов. Именно так он определяет понятия мощности и порядкового типа. Обе названные характеристики он рассматривает как общее свойство множеств "возникающее путем абстрагирования от всех особенностей". В частности Кантор пишет: "Тем, что мы мыслим только о том, что является общим для всех множеств, принадлежащих одному и тому же классу, мы получаем понятие мощности или валентности" ([31], c. 248; курсив Кантора). Точно также пишет он и о порядковых типах: "Я рассматриваю целые числа и порядковые типы как универсалии, которые относятся к множествам и получаются из них, когда абстрагируются от свойств элементов" (c. 269). Из последнего отрывка очевидно, что Кантор пытается рассматривать трансфинитные числа по аналогии с конечными целыми числами. Последние действительно можно рассматривать как результат абстрагирования от особенных свойств конечных множеств. Так число четыре есть то общее, что присуще четырем яблокам, четырем ножкам стула, четырем углам квадрата и т.д. - это весьма традиционное
представление, восходящее к Аристотелю. Кантор же склонен рассматривать любое множество как сущность. Оно должно считаться существующим, если каждый его элемент вполне определен. Тогда и само множество вполне определено и его существенный признак (т.е. его порядковое число) также рассматривается как вполне определенное. Кантор, по-видимому, склонен субстантивировать и эти существенные признаки. Он даже пытается описать их в аристотелевских категориях материи и формы, утверждая, что совокупность элементов множества следует рассматривать как материю порядкового числа, а порядок, существующий между этими элементами, как форму (c. 270-271). (См. примечание 1)
        3 Брауэровская интерпретация существования
        Выше мы выделили такое понимание существования предмета в математике, которое основано на возможности непосредственно указать на этот предмет с помощью определенной завершенной процедуры. Иными словами, предмет существует тогда, когда может быть сконструирован. Утверждение, что такая интерпретация существования является атрибутом интуиционистской школы (существенным признаком, отличающим ее от других школ) давно стало общим местом. Выразительная формула - "esse=construi" - рассматривается (и, очевидно, не без основания) как девиз всего этого направления. Важно, впрочем, иметь в виду, что приведенная фраза принадлежит Карлу Попперу, весьма критично относившемуся к интуиционизму ([46], c. 473-479). Как бы точно ни характеризовало попперовское выражение интуиционистское понимание существования, оно нуждается в серьезном углублении.
        Конструктивность математических объектов не появляется в математике интуиционистской школы как нечто само собой разумеющееся. По крайней мере для Брауэра (о котором мы и будем говорить в дальнейшем) она оказывается необходимым следствием анализа когнитивной деятельности человека. Структура математического рассуждения (как его представляет Брауэр) отражает прежде всего эту деятельность, более того, является наиболее чистым ее выражением.
        Брауэровская математика (как и вся математика интуиционистской школы) чаще всего рассматривается в контексте кризиса оснований, вызванного обнаружением известных парадоксов и антиномий. Поэтому в требовании конструктивности математических объектов видят, главным образом, попытку устранить из математики самую возможность противоречия. Однако сам Брауэр, очевидно, идет гораздо дальше этой попытки. В целом ряде его работ обнаруживается не столько математический, сколько чисто философский интерес автора. Во всяком случае в тех статьях, на которые мы намерены в дальнейшем опираться, Брауэр озабочен не обоснованием корректности математических процедур, а исследованием когнитивной деятельности мысли как таковой. При этом он имеет явное намерение основать принцип существования в математике на исходных структурах мысли. Им предпринимается попытка трансцендентального анализа, призванного обосновать основные математические понятия как производные от форм интеллектуальной деятельности.
        Брауэр представляет когнитивную активность человека в виде последовательности ясно отличимых друг от друга восприятий. В работе "Об основаниях математики" он писал так: "Человек наблюдает в мире последовательности событий, причинные цепи, разворачиваемые во времени. Основным феноменом этого наблюдения является сама интуиция времени, в которой происходит повторение восприятий или действий. Эта интуиция обнаруживается как последовательность моментов, разбивающих жизнь на последовательность вещей, качественно отличимых друг от друга" ([65], c. 99). Не само по себе восприятие определяет структуру мысли. Брауэр выделяет нечто, называемое "элементарный акт мысли", который описывает как "разделение моментов жизни на качественно различные части, которые, будучи разделены лишь временем, могут быть снова объединены". (См. примечание 2) Из этого, не очень ясного высказывания можно заключить, что акт мысли не есть простое действие или восприятие, связанное с определенным моментом времени. Элементарный акт мысли состоит именно в различении моментов. Иными словами элементарный акт мысли производит выделение
некоторых отличных друг от друга индивидов, причем отличие их определяется разделяющими их временными промежутками. Производится, таким образом, организация времени, в котором, как в некоторой аморфной среде, выделяются фиксированные дискретные моменты. Это значит, что деятельность мысли определена двумя основными интуициями: дискретная последовательность и непрерывная среда (линейный континуум).
        Естественным примером такой расчленяющей деятельности является деление отрезка прямой линии при нанесении на него последовательности точек. Само построение отрезка, отличимого от других отрезков, его выделение в качестве отдельного восприятия можно считать элементарным актом мысли. Но серия других элементарных актов, состоящих в делении построенного отрезка, позволяет различать в его пределах другие восприятия, части этого отрезка. Сами восприятия, (См. примечание 3) будучи ограничены какими-то границами (концы отрезка) могут быть безгранично делимы. Мы полагаем, что именно это имел в виду Брауэр, когда писал: "Возможность мысленного объединения нескольких единиц, связанных некоторым промежутком, никогда не исчерпывается вставлением новых единиц" ([55], c. 245). В результате процедуры деления отрезка мы структурируем ранее нерасчлененное единство и создаем определенную дискретную последовательность в пределах непрерывной среды. Таким образом мы все больше определяем эту самую среду, устанавливая отношения ее частей.
        Две основные интуиции мысли находятся, следовательно, в состоянии постоянного взаимного определения и дополнения. Дискретная последовательность моментов структурирует аморфную среду, нечто постоянно недоопределенное, остающееся между названными моментами. (См. примечание 4) Приведенный нами геометрический пример является парадигмальным для описания любой когнитивной деятельности. Последняя, как видно, состоит в различении моментов восприятий в непрерывной временной среде и расчленении и уточнении самих восприятий.
        Математика представляет собой наиболее чистое и, по-видимому, наиболее развернутое выражение такой деятельности. Френкель и Бар-Хиллел приводят следующее высказывание Брауэра: "Изначальная интуиция математики и всякой интеллектуальной деятельности представляет собой основу всех наблюдений за какими-бы то ни было изменениями, поскольку при этих изменениях игнорируются все качественные свойства" ([55], c. 240; курсив наш - Г.Г.).
        Отвлечение от всякого чувственного содержания дискретной последовательности различающих актов мысли и создает представление целого числа, точнее, последовательности целых чисел, счета. При этом континуум, который Брауэр также называет основной интуицией, оказывается как бы в подчиненном положении. Он должен быть определен в ходе развертывания дискретной (числовой) последовательности.
        Числовая последовательность оказывается для Брауэра основным математическим объектом. Конструирование, которое, согласно замечанию Поппера, является единственным онтологически значимым для математики процессом, следует рассматривать именно как конструирование числовых последовательностей. Впрочем, такое конструирование часто является не самоцелью, а скорее способом определения непрерывного протяженного предмета. Последний, конечно, не есть реальность, данная до всякого построения. Он - среда, а не вещь. Существует то, что происходит в этой среде, точнее, что создается субъектом, действующим в пределах, заданных этой средой. Создается же им дискретная числовая последовательность. Основополагающим отношением для любой последовательности является отношение 'до-после' (отношение порядка). Это отражает ведущую роль интуиции времени в математике. Структура различия, вносимая субъектом в среду, является временной структурой. Основным различением, существующим между создаваемыми элементами, является различение во времени. Определенность предмета возникает, однако еще при одном условии, которое и делает,
на наш взгляд, окончательно ясной роль конструктивности. Необходимо принять во внимание еще одну важную характеристику когнитивной деятельности, на которую указывает Брауэр. "Человеческое поведение включает попытку удерживать достаточно длинную цепь 'вещей' с тем, чтобы иметь возможность перейти мысленно от последней к более ранней. Результатом такого действия является обнаружения правила, закона, формирующего последовательность" ([65], с. 99).
        Коль скоро когнитивная деятельность подразумевает удержание в мысли некоторого единства, чего-то целого, явленного в последовательных восприятиях (или действиях), то математика должна, выражая эту способность, конструировать единый предмет из многих элементов последовательности. "Человеческое понимание основано на конструировании обычных математических систем так, что каждый индивидуальный элемент жизни связан с соответствующим элементом системы" (Там же). Конструкция, таким образом, оказывается необходима потому, что создает единство многих конструктивных элементов (различенных моментов или восприятий). Конструирование, следовательно, лежит в основе человеческого понимания всякого предмета вообще. Благодаря созданной конструкции, предмет предстает человеку как существующий. Особенно это важно коль скоро речь идет о протяженном предмете, представление которого связано с длением, с непрерывно длящимся восприятием. Смысл конструирования тогда состоит в создании целостной структуры различимых элементов в текучей и неопределенной среде.
        Брауэром, следовательно, была реализована трансцендентальная установка, причем в том виде, в каком она прописана у Канта. К онтологической проблематике он подходит со стороны анализа рассуждения и выясняет как должен быть устроен предмет, чтобы фигурировать в рассуждении в качестве существующего. Более того, Брауэр выясняет, что предмет должен быть для этого создан в результате конструктивной деятельности, разворачиваемой во времени. Такая конструктивная деятельность сводится к созданию единой структуры - именно так понятый математический объект может рассматриваться как существующий. Единая структура, с другой стороны, развертывается согласно закону, правилу, устанавливаемому для ряда "вещей" или восприятий. По-видимому трудно интерпретировать это правило иначе, как действие способности суждения, как установление обобщающей гипотезы для совокупности установленных ранее фактов.
        4 Интерпретация существования в философии математики Гильберта
        Понимание существования математического предмета в рамках формального направления в математике представляется, на первый взгляд, совершенно противоположным интуиционистскому. В книге Френкеля и Бар-Хиллела ([55], c. 322), утверждается, что Гильберт скорее всего солидаризировался бы в этом вопросе с Пуанкаре, отождествляя существование со свободой от противоречия. Следующий пассаж из работы Гильберта "О понятии числа" уточняет и подтверждает эту точку зрения.
        "В доказательстве непротиворечивости установленных аксиом я усматриваю вместе с тем и доказательство существования совокупности действительных чисел или - употребляя выражение Кантора - доказательство того, что система действительных чисел является 'консистентным' (готовым) множеством..." И далее: "...под множеством действительных чисел мы должны, согласно этой точке зрения, понимать не совокупность всевозможных законов, которым будут следовать элементы фундаментальных последовательностей, а скорее - как это было изложено выше - систему вещей, взаимоотношения которых задаются с помощью ранее указанной конечной и замкнутой системы аксиом." ([15], c. 320).
        Обратим, прежде всего, внимание на серьезность расхождения Гильберта с Брауэром. Он (Гильберт) совершенно недвусмысленно говорит о множестве действительных чисел, как о существующем объекте. Такое допущение абсолютно невозможно для Брауэра, поскольку множество действительных чисел, понятое к тому же как совокупность "вещей", начисто исключается всякой интуицией и не может быть сконструировано. Мы очевидно имеем дело с принципиально иной философской установкой, выражающейся, в частности, в попытке иначе (чем основываясь на понятии конструктивности) определить онтологический статус предмета.
        С другой стороны, однако, не нужно глубокого проникновения в суть формальной математики, чтобы увидеть множество черт, сближающих ее с интуиционистской. Прежде всего, обращает на себя внимание слово "финитность", использованное самим Гильбертом в качестве основной характеристики своего метода рассуждения. Сам этот термин, явно указывающий на завершенность осуществляемых процедур (т.е., по сути, на конструктивность), мог бы быть применен и к интуиционистской математике. Если же говорить о попытках определения финитности, предпринимавшихся именно в рамках гильбертовской школы, то они подчас вызывают полное ощущение того, что речь идет об основных посылках интуиционизма. Френкель и Бар-Хиллел, например, в качестве окончательной формулы финитного метода рассуждения приводят следующую цитату из Ж. Эрбрана (известного математика - ученика Гильберта): "Всегда рассматривается лишь конечное и определенное число предметов и функций, функции эти точно определены, причем определение позволяет произвести однозначное вычисление их значений; никогда не утверждается существование какого-либо объекта без указания
способа построения этого объекта; никогда не рассматривается (как вполне определенное) множество всех предметов X какой-либо бесконечной совокупности" ([55], c.321). Наверное любой представитель интуиционистского или конструктивного направления опознал бы в приведенном отрывке описание своего собственного метода рассуждения. Речь однако идет об основных принципах формального метода. Заметим, кстати, что приведенное определение явно противоречит цитированному выше рассуждению Гильберта о существовании множества всех действительных чисел. Последнее никак не является объектом, для которого можно указать способ построения, однако Гильберт считает его существующим. Объясняется ли такое противоречие лишь тем, что приведенное здесь описание принадлежит не Гильберту, а математику, который мог в чем-то расходится со своим учителем? Или слова Эрбрана о существовании нужно понимать несколько иначе, чем те же самые слова, написанные интуиционистом?
        В книге Гильберта и Бернайса [18] также есть описание финитного метода рассуждения. Важным уточнением по отношению к определению Эрбрана является, прежде всего, указание на наглядность финитного объекта. Лучшим примером, иллюстрирующим эту наглядность, является рассуждение, проводимое в формальной алгебре ([18], c. 56-58). Имея запас букв (переменных) и специальных знаков, мы, действуя в рамках этой дисциплины, конструируем объекты (полиномы), руководствуясь заранее заданными правилами. Начиная с простейших объектов, состоящих из одной буквы, мы можем построить множество разнообразных и весьма сложных объектов. В рамках, обусловленных правилами процедур, могут доказываться различные утверждения и устанавливаться свойства конструируемых объектов. Но каким бы ни было проводимое рассуждение, его справедливость может быть проверена наглядно, поскольку оно всегда непосредственно представлено перед глазами. Узнать что-либо о предмете означает построить его, любой предмет алгебры возникает под руками исследователя и процедура его возникновения полностью доступна наблюдению. Финитное рассуждение
характеризуется в [18] как "прямое содержательное рассуждение, совершающееся в виде мысленных экспериментов над наглядно представимыми объектами." (с. 59).
        Если бы, занимаясь математикой, мы могли бы постоянно оставаться в рамках финитного рассуждения, то естественно было бы понимать существование математического объекта в смысле его конструктивности. Однако предметы математики очень часто не являются финитными объектами. В [18] приводится целый ряд примеров того, как в математике возникают предметы, которые невозможно сконструировать и которые не могут быть представлены наглядно. Уже арифметика требует использования нефинитных рассуждений, прибегая к "tertium non datur" для обоснования высказываний о целых числах. Число, о свойствах которого мы судим на основании закона исключенного третьего, не представлено наглядно, и может не быть доступно конструированию с помощью конечной процедуры (с. 62-64).
        Математический анализ, в его классическом изложении, практически полностью основан на рассуждениях о нефинитных предметах. Нефинитным является действительное число (о чем мы говорили выше), определяемое через бесконечную совокупность целых чисел (с. 64-67). Но анализ не ограничивается рассмотрением бесконечной совокупности целых чисел - он обращается к предметам "еще более нефинитным" (если можно так выразиться), рассматривая бесконечные совокупности действительных чисел в качестве актуально данных предметов. Рассуждения, используемые при этом, никак не могут апеллировать к наглядности. Естественно, что обращение к конструктивности, как критерию существования, оказывается бессмысленным для математического анализа. Говоря точнее, этот критерий заставляет считать названные (нефинитные) предметы своего рода химерами, странными измышлениями математиков, которые попросту не существуют.
        Такой жесткий вывод и был, собственно, сделан интуиционистской школой, реализация программы которой состояла в значительном урезании всей математики. Намерение Гильберта было прямо противоположным: обосновать корректность тех частей математики, для которых существенно обращение к принципиально нефинитным предметам. Видимо это и обусловило его обращение к той интерпретации существования, которая была в свое время предложена Пуанкаре. Разработанный Гильбертом аксиоматический подход позволял достаточно ясно сформулировать, что означает свобода от противоречия в качестве критерия существования (см. выше - о существовании совокупности действительных чисел). Доказательство существования, таким образом превращалось в доказательство непротиворечивости системы аксиом. То, как Гильберт предполагал доказывать непротиворечивость, придает понятию финитности совершенно новый смысл.
        Суть стратегии Гильберта сводилась к тому, чтобы, формализовав основные методы рассуждения в математике, установить их непротиворечивость путем анализа самого рассуждения (См, напр,[11], [12], [14], [18], [50], [55], [62]). Объектом изучения стали не математические предметы, а рассуждения об этих предметах. Но рассуждение в математике, как и всякое человеческое рассуждение вообще, даже будучи обращено к бесконечному предмету, само остается конечным. Поэтому наука, изучающая рассуждения, названная Гильбертом метаматематикой, по определению имеет дело только с финитным объектом. Сама математика может сколько угодно оперировать с бесконечностью. Но это ее оперирование будет всегда выражено в виде конечного текста, записанного по определенным правилам. Требование наглядности оказывается здесь особенно важным. Мы можем быть уверены в производимых нами математических рассуждениях, если доказана их непротиворечивость. Доказательство же непротиворечивости, производимое на метауровне, может и должно быть наглядным, непосредственно очевидным. Объект, конструируемый в ходе метарассуждения, возникает у нас на
глазах и его свойства (в частности, свойство непротиворечивости) оказывается наглядно представимым и непосредственно проверяемым. Здесь особую роль играет знаковая природа математического рассуждения. В нем любой (в том числе и бесконечный) предмет представлен знаком, конечным, более того, чувственным, доступным непосредственному восприятию объектом. Это обстоятельство специально подчеркивалось Гильбертом: "Кое-что уже дано в нашем представлении для применения логических выводов и для выполнения логических операций: объекты, которые имеются в созерцании до всякого мышления в качестве конкретных переживаний. Для того, чтобы логические выводы были надежны, эти объекты должны быть обозримы полностью, во всех частях; их показания, их отличия, их следование, расположение одного из них наряду с другим дается непосредственно, наглядно, одновременно с другими объектами, как нечто такое, что не может быть сведено к чему-либо другому и не нуждается в таком сведении..." И далее: "В математике предметом нашего рассмотрения являются конкретные знаки сами по себе, облик которых, согласно нашей установке,
непосредственно ясен и может быть впоследствии узнан" ([15], c. 351).
        Таким образом, по отношению к метаобъекту Гильберт предъявляет требования, пожалуй, более жесткие, чем Брауэр по отношению ко всем объектам математики. Последний не настаивает на "наглядности". Гильберт и Бернайс характеризуют установки интуиционизма как "расширение" финитной установки ([18], c. 71). При этом важно, что в конечном счете гильбертовская математика также основывается на определенных базовых интуициях. Френкель и Бар-Хиллел указывают, что такими интуициями для Гильберта являются первичные представления о тождестве и различии, а именно о самотождественности знака, который должен быть опознан как один и тот же при разных вхождениях в формулы и при этом отлич?н от всякого другого знака. Действительно, всякое конструирование объекта, коль скоро оно сводится к комбинирований некоторых элементарных конфигураций, подразумевает, прежде всего, способность видеть различия между разными конфигурациями и уверенно опознавать одну и ту же в различных обстоятельствах. Здесь однако уместны следующие два замечания. Во-первых, названные элементарные конфигурации, строго говоря, не являются уже знаками.
Точнее, они могут быть названы знаками в силу их происхождения, поскольку именно в качестве знака выступали для математического рассуждения. В нем они действительно обозначают нечто иное - математический объект, о котором ведется рассуждение. Но как только само математическое рассуждение превращается в объект, т.е. становится предметом метаматематического рассуждения, эти знаки уже ничего не обозначают. Они выступают лишь как первичные структурные элементы, из которых складывается, как из деталей конструктора, исследуемое математическое рассуждение.
        Во-вторых, сами эти знаки (или псевдо-знаки) очевидно оказываются объектами. Они конструируются как некоторые графические конфигурации и в качестве таковых уже сами являются предметами рассуждения. Здесь необходимо вернуться к вопросу о тождестве и различии, которые у Френкеля и Бар-Хиллела названы первичными интуициями формальной математики. Такой подход к интерпретации элементарных объектов метаматематического рассуждения был подвергнут критике, например, в [57], где проблема тождества и различия рассмотрена как чисто логическая и не нуждающаяся в ссылках на интуицию. Мы предпочитаем подойти к этому вопросу иначе. Различение знаков подразумевает возможность вынесения определенного суждения о тождестве или различии тех или иных элементарных графических конструкций. Знак или комбинация знаков становится субъектом метаматематического суждения, тогда как тождество или различие выступает его предикатом. Причем этот предикат присоединяется в суждении к субъекту в зависимости от того, как именно построена (начерчена) данная конфигурация. Например, суждение о том, что графические конфигурации 'n' и 'n',
находящиеся в двух различных позициях формулы xn=2n, тождественны, основано на том, что оба знака построены сообразно одной и той же графической схеме. Таким образом, вопрос о тождестве или различии конструктивных элементов математического рассуждения решается с помощью суждения, которое, впрочем, находится в жесткой корреляции с процедурой построения наглядно представимого, зримого предмета. Тот факт, что отождествляя или различая знаки, мы как правило не делаем никаких суждений, не меняет ситуацию в принципе. Возможность такого суждения всегда присутствует. Акт различения или отождествления знаков не является некоторым первичным, неразложимым актом. Он действительно выражается на логическом уровне. Первичной интуицией является здесь пространство, поскольку именно в качестве определенной пространственной конфигурации всякий знак может быть узнан и отличен от другого.
        Похожее рассмотрение можно провести и относительно математического рассуждения (вывода, доказательства), поскольку оно является объектом метаматематики. Рассуждение, будучи конструкцией, появляющейся в результате комбинирования знаков, представляет собой чувственно воспринимаемый объект. Он предстает в виде определенной пространственной конфигурации, определяемой как способом сочетания составляющих его знаков, так и способом начертания самих этих знаков. Как чувственно воспринимаемый объект рассуждение выступает в качестве субъекта метаматематического суждения. Задачей метаматематики оказывается установление ряда предикатов (например, предиката непротиворечивости) для названного субъекта. Но такого рода предицирование есть не что иное как выражение определенных пространственных свойств созерцаемого (точнее создаваемого на бумаге или на доске) объекта. (См. примечание 5) Рассуждение или система аксиом обнаруживает себя как непротиворечивое (обладающее предикатом непротиворечивости) в ходе его пространственного (строго говоря, пространственно-временного) конструирования. Суждение о
непротиворечивости оказывается таким образом априорным и синтетическим, в самом строгом кантовском смысле. Гильбертовская метаматематика содержит в себе все установленные Кантом элементы знания: данный в созерцании объект, являющийся в пространстве и времени, синтетическое суждение об этом объекте и, наконец, синтез продуктивной способности воображения, в результате которого этот объект конструируется.
        Таким образом две соперничающие математические школы имеют один и тот же философский корень. Можно сказать, что каждая из них сделала больший акцент на одной из двух выделенных Кантом интуиций. Если Брауэр, как мы видели, считал исходной интуицию времени, явно утверждая вторичность и производность пространства, то Гильберт, вообще ничего не говоря о времени, явно рассматривал пространство и пространственное конструирование как основу математики. Очевидная кантианская родословная двух влиятельных математических традиций несомненно требует более внимательного анализа кантовского текста. Именно к рассмотрению проблемы существования в математики с позиций философии Канта мы перейдем в следующей главе.
        Примечания к Главе 2
        1. Хотя Кантор и пытается выстроить иерархию математических понятий, подобную родо-видовой иерархии, и рассмотреть все построенные так объекты как некие субстантивированные универсалии, предлагаемая им процедура выделения общих свойств имеет мало общего с тем абстрагированием, которое описывает, например, Боэций (см. Введение). Как мощность, так и порядковый тип бесконечного множества невозможно определить как его собственное свойство. Оно не обладает этим свойством как субстанция своим атрибутом. Мощность бесконечного множества определяется как свойство отношения множеств. Сущности можно приписывать признак, рассматривая ее саму по себе, независимо от других сущностей. Мощность множества (равно как его порядковый тип) устанавливается только для класса множеств. Поэтому подвести канторовское представление о существовании под аристотелевское учение о сущности невозможно без серьезных натяжек, хотя сам Кантор, по-видимому, хотел именно этого. вернуться в текст
        2. Цитата приводится по книге [55], с. 245. вернуться в текст
        3. В разных местах Брауэр говорит о качественно различимых частях или различимых вещах. В любом случае речь идет о дискретной последовательности событий, характеризующих когнитивную деятельность. Ряд лежащих на прямой (последовательно, друг за другом) отрезков является естественной математической моделью такой деятельности. вернуться в текст
        4. Математическое развитие этих идей содержится в брауэровской теории континуума как среды становления для свободно становящихся последовательностей. Дискретные последовательности точек, выбираемых из среды сообразно некоторому закону или согласно свободному выбору, разбивают континуум на все более мелкие части, устанавливая определенную структуру отношений между этими частями. Подробно об этом см. в [34]. вернуться в текст
        5. Близкий подход к математике разрабатывается в [60] под названием "пангеометризм". вернуться в текст
        ГЛАВА 3 Существование в геометрии. Анализ категорий модальности
        Мы видели, что две влиятельные математические школы XX века, которые справедливо рассматриваются как соперничающие между собой, исходят, в конечном счете, из общего философского основания. Этим основанием явилась для них философия Канта. Поэтому мы имеем право говорить о кантианской (или, возможно, трансценденталистской) традиции в основаниях математики. Обсуждая проблему существования и математической онтологии, мы будем иметь в виду именно эту традицию. Совершенно очевидно, что она не является единственно возможной. Ей явно противостоит иная традиция, связанная с именами Фреге и Рассела и обосновывающая математическое рассуждения средствами логического позитивизма (или аналитической философии). Мы не будем касаться этой традиции в рамках настоящей работы. Наиболее естественным для нас сейчас будет подробное рассмотрение той интерпретации существования математических объектов, которая предлагается самим Кантом.
        1 Возможное и действительное в математике
        Обсуждать проблему существования, оставаясь в рамках "Критики чистого разума", довольно удобно, поскольку определение существования дано в этой книге явно. "Существование" - одна из трех категорий модальности и Кант весьма подробно описывает каким способом рассудок определяет предмет как существующий. С другой стороны, однако, определение существования (действительности) дается здесь в совокупности с определением двух других категорий модальности и может быть правильно понято лишь при сопоставлении с ними. Обратимся к непосредственному описанию обсуждаемых категорий: возможности, действительности и необходимости. Такое описание приведено в главе "Система всех основоположений чистого рассудка" и названо "Постулаты эмпирического мышления вообще".
        "1. Что согласно с формальными условиями опыта (что касается наглядных представлений и понятий), то возможно.
        2. Что связано с материальными условиями опыта (ощущения), то действительно.
        3. То, связь чего с действительностью определяется согласно общим условиям опыта, существует необходимо." (B266, курсив Канта).
        В какой мере категория действительности (т.е. существования в собственном смысле этого слова) (См. примечание 1) может быть условием знания о предметах математики? Чтобы установить это, обратимся к краткому разъяснению Канта по поводу соответствующего постулата.
        "Постулат действительности вещей требует восприятия, т.е. ощущения и сознания, если не непосредственно самого предмета, существование которого должно быть познано, то, по крайней мере связи его с каким-либо действительным восприятием согласно аналогиям опыта.." (B272 - курсив Канта).
        Едва ли рассуждение о математическом предмете может основываться на аналогиях опыта, призванных установить "реальные связи" (т.е. связь согласно законам причинности и взаимодействия). Следовательно постулат действительности требует непосредственного восприятия предмета для познания его существования. Поэтому как о действительном можно говорить, прежде всего, только о единичном предмете, представленном благодаря ощущению. Есть ли вообще в математике такие предметы? Несомненно есть, поскольку всякое математическое рассуждение так или иначе оставляет след на бумаге или на доске. Действительным является изображенный и непосредственно воспринимаемый математический символ, выписанная формула (конечная последовательность символов), начерченная геометрическая фигура. Но эти ли предметы представляют для математики основной интерес? Разве, например, в теореме о сумме внутренних углов треугольника говорится о неровном карандашном следе, о трех попарно пересекающихся на листе бумаги отнюдь не прямых линиях, которые непосредственно воспринимаются нами? Конечно же нет. Речь идет о треугольнике "вообще", который
нигде и никак не нарисован. Но в таком случае он и не действителен.
        Может ли предмет знания не быть действительным (т.е. существующим) предметом? Ответ на этот вопрос легко угадывается, благодаря присутствию в таблице категорий другой категории модальности. Предмет знания может быть возможным предметом. Сказанного здесь уже достаточно, чтобы предполагать, что именно о возможных предметах и говорит, прежде всего, математика. Математическая онтология есть по преимуществу онтология возможного. Впрочем, по этому поводу нужны дополнительные разъяснения.
        Вот что пишет Кант о первой из категорий модальности: "Постулат возможности вещей требует, следовательно, чтобы понятия их согласовывались с формальными условиями опыта вообще. Но опыт вообще, т.е. объективная форма его, содержит в себе весь синтез, необходимый для познания объектов" (B267 - курсив Канта).
        Итак, вещь возможна, когда знание о ней содержит весь необходимый синтез. Следовательно лишь осуществив этот синтез, т.е. получив полное знание о вещи мы только и можем удостовериться в ее возможности.
        Нашей дальнейшей задачей будет выяснение того, что означает для математики такая полнота синтеза. Но прежде обратим внимание на одно важное различение. В "Критике чистого разума" имеется ряд пассажей, в которых указывается на иной смысл слова "возможность". Под возможностью понимается отсутствие противоречия в понятии о вещи. Это, очевидно, не то же самое, что согласие с формальными условиями опыта. Поэтому Кант различает логическую и реальную (или трансцендентальную) возможность. Очевидно, что нас сейчас будет интересовать последняя. Интересно однако вспомнить, что пытаясь установить критерий существования для математических объектов, Пуанкаре, а за ним и Гильберт указывали в качестве такового именно свободу от противоречия. Верно ли то, что они сводили действительность к логической возможности, совершая таким образом своеобразную подмену категорий? Проведенный выше анализ гильбертовской интерпретации непротиворечивости показывает, что это не так, поскольку сама по себе непротиворечивость оказывается результатом синтеза.
        Синтез по Канту состоит, прежде всего, в том, что к понятию, выступающему как субъект суждения, присоединяется признак (предикат), не содержащийся в понятии. Акт синтеза, таким образом, приводит к образованию нового понятия, содержание которого богаче, чем понятие первоначального субъекта суждения. Следовательно, говоря о реальной возможности, мы должны говорить, прежде всего, о возможности понятия. Оно возможно тогда, когда осуществлен его синтез. Однако присоединение предиката к субъекту в синтетическом суждении невозможно как чисто рассудочное действие. Ему должен соответствовать синтез многообразия наглядного представления, производимый способностью воображения. Произнесение суждения, описывающего некоторое реальное (См. примечание 2) положение дел, необходимо сопровождается конструированием этого положения дел в пространстве и времени. Последнее производится сообразно схеме понятия и необходимо представлено созерцанию в виде (по крайней мере) воображаемого предмета. Эта процедура подробно описана Кантом в главе о трансцендентальной дедукции категорий. Следовательно, "весь синтез", требуемый
для познания реальной возможности вещи, включает в себя как интеллектуальный синтез, так и синтез способности воображения. Здесь уместно уточнить, что может стоять за словом "вещь". Возможность чего, собственно, устанавливается. Мы видели уже, что устанавливается возможность понятия. Но конструирование, производимое воображением, согласно условиям чувственности, не может происходить без того, чтобы представить образ, воображаемый результат конструирования. Очевидно, что образ, наряду с понятием, также должен фигурировать в качестве возможного.
        Итак есть смысл говорить о возможности понятия и возможности образа. В самом деле и то и другое во-первых соответствует формальным условиям опыта, а во-вторых противопоставлено действительному, т.е. представленной в восприятии единичности. Иными словами и понятие, и образ возможны поскольку могут быть осуществлены (актуализированы). Впрочем, они возможны в разном смысле. Можно представить себе невозможное понятие (Кант приводит пример плоской фигуры, ограниченной двумя прямыми). Но образ возможен всегда, поскольку является результатом завершенного синтеза. Разберем теперь все сказанное на примере геометрии. Тот факт, что евклидова геометрия является основным источником для философии математики Канта, принимается многими исследователями. В частности это объяснено в [72], [74], [79], [83], [62]. Поэтому рассмотрение кантовских категорий на материале "Начал" Евклида можно считать модельным. Это, однако, поможет нам увидеть некоторые моменты применения указанных чистых понятий рассудка, которые оказываются существенны и для других областей математики, а возможно и для всякого знания вообще.
        Пять постулатов Евклида представляют собой пять первоначальных синтетических суждений, в которых конструируются начальные понятия геометрии. Важно то, что четыре из этих пяти постулатов (несколько отличается от прочих четвертый постулат, утверждающий равенство всех прямых углов) суть не сколько утверждения, сколько предписания. Они описывают некоторые операции, которые, будучи произведены, приведут к созданию первоначальных геометрических объектов: прямой, окружности, пары параллельных (или пары пересекающихся) прямых. Постулаты сформулированы, естественно, как общие суждения и речь в них идет об общих понятиях (прямая вообще или окружность вообще). Важно однако, что самая суть постулатов заключается в обнаружении возможности этих понятий. Они предполагают наличие схемы прямой или схемы окружности, сообразно которым могут быть построены соответствующие этим понятиям объекты. В частности, согласно двум первым постулатам, прямую в принципе можно построить. Как построить? Карандашом на бумаге или мелом на доске.
        Последнее утверждение представляется, по-видимому, слишком категоричным. Прямую или окружность можно провести и в воображении. Заметим однако, что несмотря на такую возможность почти всегда, даже при рассмотрении элементарных понятий предпочитают пользоваться чертежами. Это обстоятельство представляется нам важным, вытекающим из сути математического дискурса, а отнюдь не из слабости нашей памяти. Мы вернемся к этой проблеме позже, а сейчас заметим лишь, что синтетическое суждение, высказываемое в постулате, подразумевает не только возможность, но и действительность обсуждаемого объекта. Нам предстает не только понятие и образ, но также и чувственно воспринимаемый единичный предмет, который согласуется не только с формальными, но и с материальными условиями опыта.
        Мы будем придерживаться той интерпретации "Начал" Евклида, о которой упоминает, например, Фридман ([72], c. 88-89). Согласно этой интерпретации постулаты вводят ряд элементарных операций (построений), которые рассматриваются как заведомо выполнимые. Любое другое построение будет выполнимым, если оно представляет собой последовательность этих элементарных операций. (Естественно, что при дальнейшем изложении геометрии вместо элементарных операций могут фигурировать и более сложные построения, выполнимость которых показана ранее.) К развертыванию такой последовательность выполнимых операций сводится не только решение задач на построение, но и доказательство теорем. Всякое геометрическое предложение формулируется как некоторое общее утверждение. Это значит, что в нем предполагается возможность какого-либо понятия. Важно увидеть, что в любом предложении (т.е. в синтетическом суждении) речь идет именно об одном понятии. Добавляя к субъекту новый предикат, мы не устанавливаем отношение двух понятий, а создаем одно новое. Например, когда мы утверждаем, что сумма внутренних углов треугольника равна двум
прямым, то предполагаем реальную возможность треугольника, обладающего названным признаком, т.е. мы говорим, что понятие "треугольник, сумма внутренних углов которого равна двум прямым" возможно. Выражение в кавычках неудачно в том смысле, что создает впечатление будто равенство суммы углов указанной величине есть некий различительный признак, выделяющий определенный вид в роде треугольников. Последнее, конечно же, неверно. Синтетическое суждение, являющееся содержанием приведенной теоремы, создает новое понятие, которое мы попытались назвать с помощью приведенного здесь несколько неуклюжего выражения. Это понятие нетождественно понятию треугольника, т.к. предикат не выводится из понятия субъекта. Он присоединяется к нему в процессе синтеза.
        Проводимое далее доказательство, призванное показать реальность возможности обсуждаемого понятия, как раз и заключается в развертывании синтеза. Нам необходимо предъявить какую-либо построенную по правилам конструкцию, соответствующую понятию, реальная возможность которого доказывается. Конструкция должна быть сооружена в результате ряда действий, предписанных постулатами. Последовательность применения постулатов составляет схему рассматриваемого понятия, а возможность понятия будет установлена, когда будет завершено построение конструкции. Иными словами, возможность понятия будет установлена, когда мы предъявим соответствующий этому понятию единичный предмет, воспринимаемый чувствами. Чтобы более точно рассмотреть взаимодействие возможного и действительного при доказательстве, нам представляется уместным развернуть процедуру доказательства подробнее, описав ее в тех терминах, которые использовались еще в античности.
        2 Структура доказательства у Евклида в связи с категориями модальности
        Сейчас при изложении требующих доказательства предложений в математической литературе явно выделяются две части: формулировка предложения и его доказательство. Для античных авторов дело обстояло иначе. В изложении теоремы выделялось пять или шесть частей.(См. примечание 3)Этот способ структурирования процедуры доказательства оказывается очень уместным для правильного понимания соотношения возможного и действительного, а также общего и единичного в математическом рассуждении. Хинтикка [74] утверждает, что структура доказательства у Евклида явилась парадигмой для Канта.
        Охарактеризуем кратко эти шесть частей изложения теоремы, используя в качестве примера упомянутую выше теорему о внутренних углах треугольника.
        1. Утверждение (protasis) дает общую формулировку теоремы. В нашем случае эта первая часть теоремы выглядит так: сумма внутренних углов треугольника равна двум прямым.
        2. Экспозиция (ekqesis) указывает на единичный предмет, общее понятие которого дано в утверждении. Для геометрии естественно в этой части теоремы дать чертеж.
        Пусть ABC - произвольный треугольник.
        3. Ограничение или детерминация (diorismos) состоит в переформулировании общего утверждения для представленного в экспозиции единичного предмета: сумма углов 1, 2 и 3 равняется двум прямым.
        4. Построение (kataskeuh) - это то, что сейчас обычно называют дополнительным построением. В нашем случае оно выглядит так:
        проведем через вершину B прямую, параллельную основанию AC. 5. Доказательство (apodeixis) представляет собой последовательность логических выводов об элементах конструкции, представленной в предыдущей части. Эта последовательность должна завершиться утверждением, представленном в части 3. Для рассматриваемой нами теоремы имеет место следующий ряд заключений.
        Угол 1 равен углу 4, а угол 3 равен углу 5 как накрест лежащие при пересечении пары параллельных прямых третьей.
        Углы 4, 2, 5 в сумме составляют один развернутый, а потому их сумма равна двум прямым.
        Из двух этих утверждений следует, что сумма углов 1, 2 и 3 также равна двум прямым.
        6. Заключение (sumperasma) обобщает вывод, полученный в доказательстве, повторяя формулировку первой части:
        итак, сумма внутренних углов треугольника равна двум прямым. В предыдущем параграфе мы уже обсудили смысл утверждения теоремы. Оно содержит общее синтетическое суждение. Впрочем, назвать его в полном смысле синтетическим еще нельзя. Хотя оно и присоединяет предикат к субъекту, создавая тем самым новое понятие, синтез еще не проведен. У нас нет пока уверенности в том, что названное в protasis понятие соответствует формальным условиям опыта. Иными словами мы пока только предполагаем возможность понятия.
        Ekqesis совершает переход от общего понятия к единичному объекту. С него начинается процедура конструирования. Вместо возможного треугольника (т.е. треугольника вообще) нам предстает действительный треугольник. Согласно Канту, такое выделение единичности составляет необходимый момент математического рассуждения. "..Математика ничего не может достигнуть посредством одних лишь понятий и тотчас спешит перейти к наглядному представлению, рассматривая понятие in concreto, однако не в эмпирическом наглядном представлении, а в таком, которое a priori установлено ею, т.е. конструировано, и в котором то, что следует из общих условий конструирования, должно иметь общее значение также и в отношении к объекту конструируемого понятия" (B744). Следует обратить внимание на точность кантовского выражения: "тотчас спешит перейти к наглядному представлению". В самом деле, сразу после формулировки общего утверждения начинается конструирование чувственно созерцаемого предмета. Иными словами происходит актуализация того, что в protasis фигурировало только как возможное. В ekqesis она (актуализация) в известном смысле
беспроблемна, т.к. конструируется то понятие, возможность которого уже установлена. Здесь лишь воспроизводится синтез, проведенный ранее, поэтому мы имеем в распоряжении регулярный способ предъявления единичного предмета, соответствующего данному понятию (в нашем случае - понятию треугольника).
        Детерминация выделяет в структуре единичной конструкции, предъявленной в экспозиции, определенные конструктивные элементы - те, о которых пойдет речь в последующем рассуждении. Эта часть теоремы как бы повторяет protasis. Она также носит гипотетический характер. Но предполагается в ней не возможность понятия, а действительность конструкции. Теперь мы говорим только о единичном предмете, который уже начали конструировать. Важно, что, формулируя интересующее нас свойство, мы уже имеем перед глазами часть создаваемой конструкции. Говоря, "сумма углов 1, 2 и 3 равняется двум прямым," мы видим то, о чем говорим. Здесь мы имеем в виду непосредственно представленный, данный в восприятии, т.е. действительный объект. Этот объект - след действия, произведенного нами ранее (в экспозиции).
        Построение есть прямое продолжение экспозиции. К уже существующему (нами созданному) объекту мы добавляем новые конструктивные элементы. Каждый новый элемент добавляется в соответствии с уже известной теоремой или постулатом. (Последние, напомним, можно рассматривать как элементарные выполнимые операции или правила построения.) В нашем случае, впрочем, построение сводится к единственному акту - проведению через вершину B прямой, параллельной основанию. Но сколь проста ни была бы проводимая нами операция, она имеет ключевое значение для всей процедуры доказательства теоремы. Именно сейчас мы произвели конструкцию, полностью коррелятивную понятию, возможность которого требуется установить. Единичный объект, полученный в ходе построения и представленный на рисунке (в тексте настоящего параграфа), есть актуализация этого понятия. На этом рисунке сумма внутренних углов треугольника изображена так, что ее равенство двум прямым становится непосредственно видимым.
        Есть один очень важный момент, отличающий дополнительное построение от экспозиции. Построение треугольника в соответствии со схемой понятия треугольника означало подведение единичного объекта под общее правило. Если это общее правило (понятие треугольника) задано рассудком, то подведение подразумевает действие определяющей способности суждения. Но для той конструкции, которая была создана при дополнительном построении, у нас еще не было соответствующего понятия. То понятие, возможность которого предполагается в утверждении теоремы, не имеет еще под собой никакой схемы, никакого конкретного правила построения. Это правило необходимо изобрести, причем изобрести так, чтобы из него выводилось утверждение теоремы. Иными словами, дополнительное построение требует действия рефлектирующей способности суждения. Создаваемая конструкция (равно как и правило, по которому она создается) есть обобщающая догадка, есть та общая структура, в рамках которой становятся ясными интересующие нас отношения ранее построенных объектов. Все они находят свое место в объединяющей их конфигурации и конструирование каждого
отдельного элемента становится целесообразным. Следовательно, только благодаря рефлектирующей способности суждения возможен синтез понятия в теореме.
        Если построение есть непосредственное продолжение экспозиции, то доказательство как бы продолжает детерминацию. Оно представляет собой речь по поводу проведенного построения, описывая полученную в ходе его конструкцию. Доказательство, как и детерминация, имеет дело со следом. Хинтикка утверждает, что эта часть теоремы чисто аналитическая, поскольку, в отличии от экспозиции и построения, не вводит никаких новых единичных предметов. Все доказательство можно развернуть в виде цепочки силлогизмов.
        1. Накрест лежащие углы равны. Углы 1 и 4 - накрест лежащие. ______ углы 1 и 4 - равны.
        2. Накрест лежащие углы равны. Углы 2 и 5 - накрест лежащие. ___ Углы 2 и 5 - равны.
        3. Смежные углы в сумме равны двум прямым. Углы 1 и 3+5 - смежные. ___
        Углы 1 и 3+5 - в сумме равны двум прямым
        4. Если слагаемые равны между собой, то их суммы равны . Слагаемые в суммах 4+5+2 и 1+3+2 равны между собой. ____
        4+5+2 и 1+3+2 равны между собой.
        5. Если две величины порознь равны третьей, то они равны между собой. 1+2+3 и p порознь равны 4+5+2 ___ 1+2+3 и p равны между собой.
        Обратим внимание на то, что меньшими посылками этих силлогизмов являются единичные синтетические суждения. (Поэтому и заключение каждого силлогизма - единичное суждение.) Этим они (меньшие посылки) существенно отличаются, например, от больших посылок или от утверждения теоремы. В них не содержится никакого синтеза понятий. Следовательно они не устанавливают (и не предполагают) возможности. Их роль совершенно иная. Они фиксируют действительность предмета, описывая актуальный, уже созданный единичный объект. Все, что говорится по ходу доказательства относится к имеющемуся в наличии предмету. Это присутствие в наличии (которое, вообще, и есть действительность) представляет собой необходимое условие доказательства. Последнее всегда относится к следу проведенного построения. Если при разговоре об аксиомах или постулатах требование наличия следа (на доске или бумаге) казалось излишним, то теперь именно этот след и является изучаемым объектом. Заключительная фраза доказательства в точности повторяет детерминацию. Но если тогда она произносилась гипотетически, то сейчас является описанием уже построенного
объекта, т.е. констатацией факта. Суть этой констатации состоит в том, что она указывает на актуализацию того понятия, возможность которого предполагалась в protasis. Коль скоро нами построена конструкция, сообразная схеме этого понятия, то оно (понятие) реально. Возможен его реальный синтез согласно формальным условиям опыта. Точнее не только возможен, но уже произведен. Поэтому можно вернуться к первоначальному утверждению теоремы, произнеся его уже в качестве заключения. Заключение представляет собой общее суждение, указывающее на реальную возможность понятия, как на установленную. В переходе от доказательства к заключению можно усматривать логическую трудность. С точки зрения формальной логики такой переход незаконен, т.к. является заключением от единичного к общему, т.е. переходом от более слабого утверждения к более сильному. Проведенное рассмотрение позволяет, однако, взглянуть на дело иначе. В доказательстве мы говорили о действительном объекте. Заключение касается лишь возможности того же объекта вообще. То, что действительно, естественно также и возможно. Обоснование законности заключения,
таким образом, состоит в рассмотрении не количества суждений, а их модальности. Мы совершаем переход от более сильной модальности к более слабой, чем и удостоверяем истинность утверждения теоремы.
        3 Необходимость и случайность
        Пока что мы не касались третьей из категорий модальности - необходимости. Обращение к ней требует от нас дополнительных разъяснений, ибо возникает подозрение, что все предыдущее рассуждение содержит какую-то путаницу с категориями. В самом деле, разве доказательство теоремы устанавливает возможность суждения? Не лучше ли сказать, что она устанавливает его необходимость? Совершенно естественно и неоспоримо, в частности, что сумма внутренних углов треугольника необходимо равняется двум прямым. Утверждение, что упомянутая сумма возможно равна двум прямым, звучит по меньшей мере странно. Прежде всего, укажем на два различных (хотя и близких) понимания возможности. Допустимо (и вполне естественно) говорить о возможном, как о горизонте всех явлений, которые могут при определенных условиях возникнуть. Например, речь может идти о спектре различных свойств, которыми может обладать вещь (точнее о спектре признаков, которые могут быть присоединены к данному понятию). Треугольник может быть равнобедренным или вписанным в окружность. Но может и не быть. Но сумма его внутренних углов равна двум прямым всегда.
Этого не может не быть. Это - необходимое свойство. В противоположность ему два других - случайные. Может так случиться, например, что треугольник вписан в окружность.
        Как, однако, удостовериться в возможности, понимаемой в названном только что смысле? Как, уж если мы обратились к такому примеру, выяснить, что треугольник можно вписать в окружность. Процедура выяснения, оказывается, ничем не будет отличаться от той, которая выполнялась при установлении необходимого свойства. Мы должны будет установить, что понятие "треугольник, вписанный в окружность," согласуется с формальными условиями опыта, т.е. предъявить необходимый синтез настоящего понятия. Говоря более конкретно, нужно, сформулировав сначала общее суждение о возможности (protasis), мы должны будем затем начертить треугольник (ekqesis). После этого общее суждение о возможности будет переформулировано применительно к единичному предмету (diorismos - вокруг построенного треугольника ABC может быть описана окружность l). После этого мы проведем серединные перпендикуляры к двум сторонам треугольника (kataskeyh), докажем, что точка их пересечения - центр окружности, проходящей через вершины треугольника (apodeixis), и сделаем окончательный вывод об истинности исходного утверждения (sumperasma).
        Таким образом, возможность и необходимость оказываются категориями достаточно близкими. Впрочем, речь пока что должна, по-видимому, идти о двух разных пониманиях возможности. Когда мы обсуждали категорию возможности в предыдущем параграфе, мы говорили о возможности в противопоставлении действительности. Мы указывали, что треугольник (с суммой внутренних углов равной p) является возможным понятием, поскольку может быть построен. Мы всегда можем предъявить соответствующее ему созерцание, т.е. создать конструкцию согласно определенной схеме. Этим названное понятие ничем не отличается от таких, как "равнобедренный треугольник", или "треугольник, вписанный в окружность". Каждое из них обнаруживает себя как реальное тогда, когда проведена процедура синтеза и предъявлена соответствующая актуализация. Здесь мы поэтому говорим о несколько иной интерпретации той же самой категории. Важно, впрочем, что для обеих интерпретаций требуется проведение всей полноты синтеза.
        Так что устанавливая необходимость какого-либо положения дел, мы одновременно показываем возможность некоторого понятия. С другой стороны, выясняя возможность чего-либо, мы обнаруживаем необходимую связь актуализируемых при этом понятий. Так, когда мы проводим процедуру, призванную показать возможность понятия "треугольник, вписанный в окружность," мы одновременно доказываем, например, такое (необходимое) утверждение: "Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, есть центр описанной вокруг него окружности".
        Возможность и необходимость устанавливаются при одинаковых обстоятельствах, но относятся к разному. Возможность относится к одному понятию, тому, которое конструируется в синтетическом суждении. Необходимость относится к связи понятий. Понятие или предмет не могут быть необходимыми. Необходимым может быть какое-то положение дел: связь понятий или отношение объектов.
        Говоря о возможном, мы всегда подразумеваем случайность. То, что возможно, может и не произойти. Треугольник может быть и не вписан в окружность, хотя такое возможно. К чему относится это указание на случайность? Оно относится к некоторому событию, а именно событию актуализации данного понятия, т.е. событию построения. Точнее, здесь нужно говорить о ряде событий, после которых появляются на свет какие-то новые конструкции. Что такое событие не одно, следует из структуры теоремы, в которой различены ekqesis и kataskeuh. Возможное возможно, поскольку оно может случиться. Но к этому моменту случайности относится и указание на необходимость. Некоторое положение дел необходимо, если возникает всякий раз, когда нечто случится. Всякий раз, когда треугольнику случится быть вписанным в окружность, центр этой описанной окружности совпадет с точкой пересечения серединных перпендикуляров. Установление необходимости требует указания случая.
        Обратим внимание, что выражение возможности и необходимости требует, строго говоря, различных суждений. Возможность фиксируется категорическим суждением, конструирующим новое понятие. Необходимость фиксируется гипотетическим суждением, указывающим на условие, при котором неизбежно наступает некоторое положение дел.
        Сказанное легко проследить на примере теоремы о сумме внутренних углов. Внутренние углы треугольника необходимо составляют в сумме два прямых, но для этого треугольнику еще нужно случиться. Треугольник - возможное понятие. Его можно нарисовать, а можно и не рисовать. Необходимость названного равенства обнаруживается лишь при условии наступления определенного события.
        В нашем рассмотрении сейчас оказалось задействовано три элемента математического дискурса. (Впрочем, по-видимому, не только математического.) Эти элементы суть понятие, единичный предмет и событие. Рассматриваемые нами категории модальности относятся, вообще говоря к разным из названных элементов. Возможность (по крайней мере, до сих пор) всегда подразумевала понятие. Действительность - единичный предмет. Необходимость описывает отношение понятий, а случайность - событие. Последнее представляет собой единичность иного рода, чем предмет (или объект). В нашем рассуждении в качестве событий выступали экспозиция и построение. Именно они случаются. Именно относительно них не может быть предъявлено никаких гарантий - они могут и не произойти. Познание необходимости требует, таким образом довольно тонкого перехода от общего к единичному, поскольку в необходимом суждении фиксируется связь общих понятий, но как условие этой связи выступает единичное (случайное) событие. Смысл этого перехода раскрывается Кантом в кратком замечании о схеме необходимости (B184): "Схема необходимости есть существование
предмета во всякое время" (курсив наш). Необходимость, таким образом, устанавливается вследствие произвольности момента события. Она состоит в том, что когда бы ни произошло событие, ему обязательно будет сопутствовать некоторое (причем всегда одно и то же) положение дел.
        Эта одинаковость при многократном повторении, собственно, составляет определение общности. Понятие является общим потому, что задает схему, согласно которой строятся многие единичные объекты. Оно - общее для многих разных объектов. Оно много раз актуализируется, будучи возможным. Актуализация есть событие появления единичного объекта и это событие всякий раз случайно.
        Случившееся действительно. Действительное появляется в результате происшедшего события. Прежде всего, в результате экспозиции, а затем и построения. Необходимость, как мы видели, указывает на положение дел, которое неизбежно устанавливается вследствие этого построения, т.е. проведенного сообразно условиям опыта синтеза. Так, видимо, нужно понимать последний из постулатов эмпирического мышления: "То, связь чего с действительностью определяется согласно общим условиям опыта, существует необходимо." (B266).
        В Главе 1 нами была использована еще одна категория - факт. По сути это то же самое, что мы назвали здесь "положением дел". Связь факта с объектом коррелятивна связи необходимости с действительностью. Установление факта есть установление связи элементов в данной конструкции. Иными словами факт выражается общим суждением, которое формулируется, например, в качестве утверждения теоремы. Но установить необходимость факта можно лишь построив ту конструкцию, связь элементов которой он обозначает. Иными словами факту должен соответствовать объект. Установление факта и построение объекта это одна и та же процедура - точно также, как выяснение возможности понятия и необходимости связи понятий.
        Завершая наше рассуждение о необходимости, мы должны вернуться к тому выводу, которым заключили предыдущий параграф. Там мы заметили, что переход от единичного суждения к общему при доказательстве теоремы допустим потому, что таким образом осуществляется переход от более сильной модальности к более слабой (от действительности к возможности). Здесь вполне можно увидеть ошибку, состоящую в том, что произведена подмена различных категорий. Можно сказать, что в заключительной части теоремы делается переход от действительности к необходимости, т.е. к более сильной модальности, а потому такой переход все же неправомерен. Ответом на такое возражение может служить обнаруженное нами разграничение сферы действия категорий возможности и необходимости. Все рассуждения предыдущего параграфа касались только понятий и единичных объектов и не касались их отношений. Поэтому там не могло идти речи о необходимости. Мы указали, что symperasma теоремы устанавливает возможность понятия, тогда как apodeixis приводит к выводу о действительности соответствующего этому понятию предмета. В таком переходе нет ничего
незаконного. Единственное, о чем не было сказано, это о произвольности момента построения названного предмета, которая и обуславливает необходимость отношения понятий, устанавливаемую теоремой. Мы уже упоминали, что обнаружение возможности обязательно оказывается сопряжено с установлением необходимости. Чтобы установить возможность, нужно построить действительный объект. Но построение действительного объекта (сообразно общим условиям опыта) подразумевает необходимость связи его элементов.
        Здесь возникает еще одно недоразумение. Можно нарисовать на бумаге какой-нибудь завиток совершенно произвольной конфигурации. Коль скоро он построен, он, несомненно, возможен. Не могли же мы изобразить невозможный предмет. Но никакой необходимой связи элементов в нашей конструкции нет. Здесь налицо явное несовпадение категорий возможности и необходимости. Следует, однако, помнить, что мы говорили о возможности понятия. Уместно задать вопрос: какое понятие было актуализировано при рисовании лишенной всякой регулярности загагулины? Даже, если мы и имели нечто в виду, прежде, чем изобразили ее, совершенно невозможно выяснить в какой мере действительный предмет соответствует нашему замыслу. Если же такая возможность есть, то значит есть возможность и многократного воспроизведения, т.е. можно уже говорить о существовании некоторой схемы. Последнее же означает необходимую связь элементов.
        4 Возможное и действительное в отношении ко времени
        В главе "О схематизме чистых понятий рассудка" Кант, рассматривая условия применения категорий к явлениям, установил, что таковое возможно при посредстве "трансцендентального определения времени". Определение времени есть схема категорий, с помощью которой явление подводится под понятия рассудка (B178). Ниже мы попытаемся подробнее рассмотреть, что означает определение времени в математическом рассуждении. Разъяснения самого Канта по этому поводу кажутся чрезмерно краткими. Особенно это относится к категориям модальности. По поводу действительности он ограничивается единственной фразой: "Схема действительности есть существование в определенное время" (B184). Не претендуя на подробный комментарий кантовского текста, попробуем все же ответить на вопрос: как и чем определено время существования действительного предмета?
        Действительный предмет явлен нам при экспозиции или при построении. Экспозиция неизменно сопровождается фразой типа: "Пусть ABC - треугольник". Поскольку речь идет о единичном треугольнике должно быть совершенно ясно какой именно треугольник назван ABC. Ответ на этот вопрос может быть только один: "Вот этот, здесь и сейчас нарисованный треугольник". Даже, если треугольник был нарисован раньше, указание на него происходит сейчас, в тот самый момент дискурса, когда возникла потребность (или желание) предъявить его как существующий, действительный объект. Поэтому время, определяемое схемой действительности, есть настоящее время. Конечно, действительный объект, будучи один раз построен, продолжает существовать и дальше. Но узнать о его действительности можно только при актуализации, т.е. при определенном событии дискурса. Актуально событие, происходящее сейчас. Точнее, актуален (действителен) объект, являющийся в происходящем ныне событии. Событие, происшедшее в прошлом, не сохраняет своей действительности, но оставляет след.
        Важно иметь в виду, что время определяется (в данном случае как настоящее время, как теперь) именно дискурсом. Проводимое (актуально) построение и сопровождающее его высказывание ("Вот этот треугольник") выделяют настоящее по отношению к прошлому. Это выделение настоящего происходит благодаря наличности прошлого. Прежде всего это обнаруживается тогда, когда мы приступаем к описанию объекта, как это делается, например, при проведении доказательства (apodeixis). Произнося определенное суждение, мы адресуемся к чертежу, как результату проведенного построения. Суждение, произносимое при доказательстве, также произносится теперь, но для него есть нечто, к чему оно относится как к уже происшедшему. Это происшедшее есть событие, оставившее след и поскольку мы имеем возможность обратится к нему снова, т.е. вторично после построения, мы определяем его как прошлое по отношению к произносимому ныне суждению. Объект при этом должен быть вновь воспринят, т.е. вновь стать действительным. Будучи впервые актуализирован при построении, он повторно актуализируется при доказательстве. Ясно, что такая актуализация
может происходить многократно. То, что остается после построения, т.е. то, что подлежит актуализации при доказательстве мы и называем следом.
        Выше мы говорили, что многократность воспроизведения собственно и означает общность. След, таким образом, есть общее для многих актуализаций. Он также есть возможное - он может быть актуализирован и поэтому находится в согласии с формальными условиями опыта. Но он не совпадает с понятием, хотя бы потому, что понятие может актуализироваться при другом построении и произвести еще один след. Впрочем, актуализация следа требует обращения к понятию, поскольку при ней должна быть задействована та же самая схема, сообразно с которой происходило построение. Поэтому математический дискурс носит отчасти герменевтический характер: глядя на данную графическую конфигурацию, мы воспроизводим ее смыслы, т.е. пытаемся прочесть ее. Под смыслом здесь подразумевается именно понятие. Каждый раз увидеть в следе одно и то же значит воспроизвести одно и то же построение, т.е. актуализировать общее для всех этих построений понятие, действуя сообразной одной и той же схеме.
        5 Дискретность и непрерывность в структуре дискурса
        Теперь мы можем рассмотреть как устроен дискурс, проводимый в геометрии. В нем, прежде всего, можно увидеть последовательность событий, сопряженных с актуализацией чего-либо (понятия или следа). Но всякая актуализация есть синтез, в котором определенное (понятием) построение сопровождается произнесением соответствующего синтетического суждения. Последнее может быть и единичным суждением, но произносится всегда, хотя бы в качестве указания на проведенное построение ("пусть ABC - треугольник"). В доказательстве, как мы видели, производится то же самое действие: суждение сопрягается с построением, хотя, в данном случае, и неявным. Это, конечно, не построение, предъявляющее новый объект, а воспроизведение прежнего. Однако действие, производимое при этом, также является синтезом, соотнесением некоторой конструкции с формальными условиями опыта. Благодаря такому действию, конструкция, пребывавшая в виде следа, вновь становится действительной.
        Таким образом дискурс есть ряд следующих один за другим синтетических актов. Каждый из них сопряжен с определенным событием и определят некоторый момент теперь. Совершение синтетического акта предполагает наличие действий, совершенных ранее, т.е. некоторых моментов прошлого. Как мы уже говорили ранее, статус прошлого создается наличием следа, с которым так или иначе сопряжено совершение нынешнего синтетического акта. Последовательность дискурса дискретна, поскольку каждое совершаемое действие (равно как и каждое событие) завершимо и все действия различимы, т.е. отделены друг от друга. Последовательность и дискретность дискурса определяет последовательность времени, как ряд отличимых друг от друга моментов 'теперь'. Каждый акт, отнесенный к моменту прошлого, может быть актуализирован, т.е. воспроизведен в настоящем.
        Различимость синтетических актов и связанных с ними моментов времени подразумевает, что, следуя один за другим, они должны быть чем-то разделены. Предполагается некоторое между, т.е. какой-то промежуток, отделяющий один момент от другого. Проще всего этот промежуток обнаруживается в процедуре деления отрезка прямой. Рассмотрим подробнее эту незамысловатое, на первый взгляд, действие.
        Заметим, прежде всего, что, прочертив отрезок прямой, мы, несомненно, произвели некий синтез, т.е. совершили некоторый синтетический акт. Однако - и в последующем мы еще изучим все следствия этого наблюдения - этот акт нельзя свести к одному моменту времени. В нем должно выделить по крайней мере два ясно различимых события: начало и конец прочерчивания отрезка. Мы ставим две точки, совершая тем самым два последовательных синтетических акта. Но отрезок - это не две точки. Отрезок - это то, что их разделяет, т.е. лежит между ними. Однако с этим "между" еще не связано никакого синтеза. Можно удовлетвориться первым постулатом Евклида, чтобы удостовериться в обоснованности нашего действия, но этого недостаточно, чтобы связать построенный предмет с каким-либо понятием. В частности у нас пока отсутствует критерий для опознания прямой, т.е. для обнаружения ее отличия от любой другой линии, соединяющей две точки. Чтобы изучить структуру прямой, нам нужно исследовать различные лежащие на ней точечные конфигурации. Именно это, между прочим, было сделано при попытках исследовать геометрию прямой линии и
построить аксиоматику прямой. Вариант такой аксиоматики, а также историю проблемы можно найти книгах [25] и [26].
        Первое действие, которое должно быть произведено, состоит, следовательно, в делении отрезка на две части. Ясно, что, строя новые точки на отрезке прямой, мы можем связывать с этими точками определенные суждения. Более того, по поводу выстраиваемых точечных конструкций должен быть развернут доказательный дискурс, содержащий те же самые части, которые были рассмотрены нами ранее, при изучении структуры античной теоремы. Но всякая новая точка, появляющаяся на отрезке, будет появляться между двумя ранее построенными точками. Этот акт несколько отличен от тех, которые мы обсуждали. Это не есть актуализация следа - происходит новое построение, в результате которого возникает не существовавший ранее объект. Однако оно все же не вполне новое, потому что присутствующий здесь след некоего построения (прочерченный отрезок) существенно определяет то, как будет поставлена точка. Ставя третью точку между двумя построенными, мы, с одной стороны, совершаем действие, следующее за двумя уже совершенными. Но с другой стороны мы вроде бы возвращаемся к прошлому по отношению по крайней мере к одному из двух названных
событий. Если две точки определяют начало и конец отрезка, то точка, поставленная между ними, как бы извлекает нечто из предшествующего концу, но следующему после начала. В нашем дискурсе всякое событие связано с поставленной точкой. Но поставить точку между двумя другими, значит обратиться ко времени, когда ничего не происходило. Мы словно извлекаем событие из чистой потенциальности следа и определяем еще один момент между двумя уже бывшими моментами.
        Таким образом, наряду с дискретной структурой времени, определяемой дискретной последовательностью событий дискурса, мы обнаруживаем еще и непрерывную его составляющую, то что "протекает" между событиями. Если дискретное время, состоящее из последовательных моментов, наполнено событиями или синтетическими актами (пока мы не различили одно от другого, но обязательно сделаем это в последующем), то непрерывное время есть время чисто потенциального пребывания следа, такого следа, который еще не был связан ни с какой актуализацией. Поэтому след, подобно времени, имеет как непрерывную, так и дискретную часть. Воспроизведение (чистый повтор) возможен лишь по отношению к дискретной части следа. Непрерывная его часть оказывается некой средой, в которой происходят иные события и которая "заполняет" промежутки между дискретными точками, составляющими следы синтетических действий.
        Не только деление отрезка на части позволяет различить непрерывную и дискретную составляющие в дискурсе. Для любых двух событий всегда найдется какое-то разделяющее их непроясненное "между", определяющее однако ход событий дискурса. В теореме о внутренних углах треугольника, мы можем (хотя это и не вполне точно) указать два события: построение треугольника (в экспозиции) и проведение прямой (в дополнительном построении). Между двумя этими действиями ничего не происходит. Но можем ли мы говорить, что их ничего не разделяет? Проведение прямой на определенном расстоянии от основания (которому она параллельна) означает определенность временного промежутка между двумя событиями. Если бы прямая была проведена ближе к основанию, промежуток был бы иным. Можно апеллировать к простому психо-физиологическому обстоятельству: чем дальше друг от друга расположены две изображаемые на бумаге фигуры, тем больше времени нужно, чтобы перенести карандаш или проследить это расстояние глазами. Даже если считать такой аргумент неуместным в философском рассуждении, то все же надо согласиться, что структура расстояний,
определяющая взаимное расположение различных элементов конфигурации, коррелятивна длительностям временных промежутков, разделяющих моменты построения этих элементов. Расстояния отсчитываются по прямой. Поэтому, определяя удаленность одного объекта от другого, мы так или иначе должны, хотя бы мысленно соединить их отрезком прямой линии. Но чем длиннее отрезок, тем больше времени проходит между событиями построения его начала и конца - естественно в масштабе одного дискурса. Точка, поставленная на отрезке при его проведении, была раньше, чем конец этого отрезка.
        Вернемся теперь к нашему рассуждению об отрезке прямой. Мы видели, что его построение с самого начала подразумевает два синтетических акта, в результате которых появляется начало и конец отрезка. То, что происходит между этими двумя действиями не есть вполне синтетический акт, поскольку не прояснено понятие прямой. Оно проясняется по мере построения новых точечных конфигураций между началом и концом отрезка. Но тогда подлинным событием построения мы можем считать лишь поставленную точку. Только такое действие может быть связано с моментом 'теперь', т.е. с настоящим. Иными словами, только точка действительна. Любая непрерывная линия, а значит и любая геометрическая фигура, всегда есть след, то непроясненное нечто, что находится между точками, производится между событиями. Можно, конечно, увидеть в непрерывном прочерчивании линии синтез, проводимый согласно определенной схеме, т.е. сообразно некоторому понятию. Именно это предлагает сделать Кант, разъясняя понятие экстенсивной величины (B203): "Экстенсивной я называю всякую величину, в которой представление целого делается возможным благодаря
представлению частей (которое поэтому необходимо предшествует представлению целого). Я не могу представить линии, как бы мала она ни была, не проводя ее мысленно, т.е. не проводя последовательно всех ее частей, начиная с определенной точки и таким образом впервые начертая наглядное представление ее".
        С одной стороны, описанная здесь процедура составления целого из подобных друг другу частей должна быть принята как процедура синтеза прямой линии, конструирующая также и понятие прямой. Но с другой стороны, приведенное разъяснение может показаться странным, поскольку превращает проведение прямой линии в актуально бесконечный процесс. Ведь каждая часть также состоит из частей, которые должны быть проведены прежде. Поэтому, завершив построение отрезка, мы должны будем "путем последовательного синтеза" завершить бесконечный ряд построений. В доказательстве тезиса первой антиномии сам Кант указывает на невозможность такого акта (B454).
        Однако представление об отрезке, как состоящем из частей, возможно не прежде, чем произведено его деление. Иными словами мы можем говорить о прямой как результате присоединения друг к другу более мелких отрезков лишь после того, как проведено построение ряда точечных конфигураций и исследована структура прямой линии. Такое исследование дает возможность сформулировать понятие прямой, которое, однако, отсутствовало в момент ее проведения. Кантовское определение линии, как последовательности частей, есть поэтому результат уже проведенного дискурса, причем такого, в ходе которого был совершен конечный ряд синтетических актов. Все наши выводы о прямой линии, о взаимном расположении на ней точек и отрезков сделаны после построения на ней конечного числа точек, т.е. после того, как она разделена на конечное число частей. Именно такое деление и является синтезом в полном смысле слова. Проведение непрерывной линии таким синтезом считать нельзя, поскольку при таком построении не создается еще никакого понятия. Точнее, мы не знаем, какое понятие актуализируется.
        Все сказанное приводит к несколько странным выводам. В любом геометрическом построении совершается два рода действий: проведение линий и выставление точек. Реальный синтез связан только с последним. Мы уже говорили, что лишь точка по-настоящему актуальна, только она может быть построена или воспринята в момент 'теперь', т.е. в настоящем. Любая более сложная конфигурация тут же уходит в прошлое и обращается в след. Но если это так, то синтетические акты, составляющие последовательность дискурса, ничем содержательно друг от друга не отличаются. Мы не можем указать ничего, чем одна точка отличается от другой, кроме места в пространстве и времени.
        Таким образом важным элементом выстраивания дискурса является факт чистого различия его элементов. Для природы дискурса определяющим оказывается не содержательное различие каких-то сущностей (понятий или объектов), а различие само по себе, различие того, что неразличимо по содержанию.
        Следовательно определенность создаваемого в дискурсе объекта может возникнуть только как структура отношений между точечными актами. Эти отношения и определяются пространственно-временной локализацией каждого из них. "Место в пространстве и времени" - это не сущностная характеристика объекта, но указание на его положение относительно других, отличных от него объектов. То, что составляет сущность сложной конфигурации (геометрического объекта), сводится к системе отношений между простыми элементами (точками), о которых важно знать только то, что они отличаются друг от друга. Мы однако видели, что пространственное взаиморасположение точек коррелятивно их временной последовательности. Дискурс, разложимый на дискретный ряд следующих друг за другом событий, может содержать только временные отношения. Но эти отношения могут быть определены лишь длительностями временных интервалов между событиями. Таким образом структура геометрического объекта должна быть определена темпоральной структурой дискурса.
        Темпоральная структура, впрочем, не есть время дискурса. Дискурс об определенном предмете может быть повторен в любое время, которое в ходе дискурса организуется сообразно разворачиваемой темпоральной структуре. Темпоральная структура, таким образом, сама независима от времени. Она многократно воспроизводится в протекающем во времени дискурсе и фиксируется в виде пространственных конфигураций. Сама она, однако, остается вне всякой фиксации. Эта невидимая и неслышимая структура последовательности разворачиваемых во времени точечных событий содержит в себе принцип взаимодействия дискретных моментов непрерывного временного "наполнения". Иными словами она содержит принцип "определения времени", производимого дискурсом.
        Все, что мы сказали здесь о темпоральной структуре объекта, в полной мере относится к тому, что у Канта названо трансцендентальной схемой. Это "правило синтеза способности воображения в отношении чистых форм в пространстве" (B180). Заметим однако, что это правило есть руководство для построения объекта (порядок, последовательность действий), но не словесно озвучиваемая инструкция или описание. Последнее ближе к понятию и именно к согласию с ним схема призвана привести конструируемый в пространстве объект. (См. примечание 4)
        Мы, следовательно, сталкиваемся здесь с какой-то таинственной частью мышления, которая, не имея никакого внешнего выражения, может быть описана лишь крайне приблизительно. На что бы мы ни указали, пытаясь указать на трансцендентальную схему (или на темпоральную структуру дискурса), это в любом случае будет не она, а либо понятие, либо образ, либо предмет. Сам Кант по этому поводу писал: "Этот схематизм нашего рассудка в отношении явлений и чистой формы их есть сокровенное в недрах человеческой души искусство, настоящие приемы которого нам едва ли когда-либо удастся проследить и вывести наружу" (B181). В чем-то трансцендентальная схема сходна с музыкальным ритмом. Последний представляет собой структуру, организующую последовательность звуков и пауз, т.е. дискретную последовательность звучаний в некотором незвучащем континууме. Ритм не звучит и непосредственно не выражается в нотной записи. Звучащая музыка есть лишь единичное развертывание заданной ритмом структуры. Нотная запись называет ритм, т.е. рассказывает о нем или описывает его. Сам он остается вне звука и вне записи. (См. примечание 5)
        6 Различие и тождество в дискурсе
        Выше мы указали, что элементарные объекты, возникающие в результате синтетических актов (событий дискурса), отличаются друг от друга только местом и временем. Но структура сложного объекта, конструируемого в ходе дискурса, определяется схемой, т.е. вневременной структурой, при актуализации которой только и появляется различие элементов во времени. Не следует ли из этого, что актуальному (пространственно-временному) отличию элементов должно быть предположено какое-то вневременное различие? Естественно предполагать, что схема оказывается структурой отношений каких-то предметов, о которых известно лишь, что они отличны друг от друга.
        Такой поворот дает, прежде всего, возможность уточнить, что, собственно говоря, означает одинаковость объектов. Выше мы говорили, что элементарные события дискурса ничем содержательно друг от друга не отличаются. Слово "содержательно" может означать лишь то, что возникающие при названных событиях объекты одинаковы. Ясно, что эту одинаковость мы не можем определить через сопоставление и выделение общих свойств. Для точек она может быть определена только отрицательно. Заметим, что указывая на их различие в месте и времени, мы не обнаруживаем никаких других оснований для различения. Иными словами, мы не можем указать специфических различий между точками. Отсутствие каких-либо оснований для различения, кроме различия места и времени, и следует, по-видимому, называть тождеством объектов.
        Различие, предопределенное схемой, уже не предполагает никакого тождества, потому что здесь не может идти речи об объекте. В ней задана структура чистого различия, реализуемая (и актуализируемая) в пространственно-временном различии объектов. Крайне затруднительно объяснить, в чем состоит эта структура различий, поскольку всякий доступный обсуждению предмет не может - как мы уже указывали - быть схемой именно в силу этой доступности. На наш взгляд, мы можем лишь упоминать о ней, обнаруживая в наших собственных построениях развернутый во времени процесс конструирования объекта, составляемого из различимых элементов.
        7 Трудности рассматриваемого подхода и традиционные философские проблемы
        Реализуемый здесь нами подход к рассмотрению математического дискурса (или любого дискурса вообще) сталкивается с рядом трудностей, разрешение которых представляется довольно проблематичным. Мы, тем не менее, считаем необходимым по возможности ясно сформулировать их, поскольку на наш взгляд их появление не только обнаруживает недостатки нашего рассуждения, но отчасти воспроизводит давние философские проблемы, которые по-разному воспроизводились в разных философских построениях, но редко (или никогда) удовлетворительно разрешались. Можно поэтому предполагать, что здесь мы имеем дело с принципиальными затруднениями, свойственными самой природе мысли.
        Мы вынуждены, прежде всего, констатировать, что в дискурсе никогда не представлен целый объект. Мы видели, что наше рассуждение о любом предмете представляет собой попытку его последовательной актуализации. Но в каком виде существует актуализированный предмет? Только в виде следа. Оказавшись в прошлом, он теряет статус действительного и должен быть вновь актуализирован, чтобы вновь стать предметом рассуждения. Таким образом предметом рассуждения может быть только один объект, тот который конструируется сейчас. Актуально то, что связано с настоящим временем. Но и тот предмет, который сейчас конструируется отнюдь не является предметом дискурса. Он не может присутствовать в дискурсе как целый объект, поскольку создается как последовательность частей. Всякая построенная часть превращается в след и ее также нужно вновь актуализировать, чтобы вернуть ей ее предметность. Актуально присутствует в дискурсе только точка - лишь она может существовать сейчас, в настоящем. Только точка может быть не следом, а актуальным объектом. Пытаясь извлечь предмет нашего рассуждения из прошлого, мы также можем извлечь
лишь точку. Мы будем последовательно обращать внимание на одну точку за другой, но всякая точка, связанная с прошлым моментом будет тут же вновь обращаться в след и ускользать от нас.
        Здесь можно увидеть неожиданную аналогию между математическим дискурсом и восприятием музыки. Оценить достоинства произведения можно лишь услышав его как нечто целое. Даже простенькая мелодия представляет собой последовательность звуков. Но лишь один звук воспринимается актуально, только одна нота или аккорд может звучать сейчас. Все произведение остается в прошлом и его актуализация еще более затруднительна, чем актуализация математического предмета, который по крайней мере представлен перед глазами.
        Описанная трудность была предметом весьма пространного рассуждения Бл. Августина, который, пытаясь рассмотреть темпоральную природу восприятия, пришел к выводу, что существует только настоящее ([1], с. 297). Августин недоумевает, как можно сравнивать по длительности различные промежутки времени, когда каждый такой промежуток относится к прошлому или к будущему и не может быть целиком представлен сравнивающему (с. 293-294). Он также задается вопросом, как можно говорить о прошлых и будущих событиях: ведь говорить о них, значит говорить о том, чего нет. Как например, можно, видя зарю, предсказывать восход солнца и даже представлять его. Последнее, поясняет Августин, возможно, только если представление восхода, которому надлежит произойти в будущем, присутствует как настоящее в душе. Воображаемая картина восхода есть также настоящее, как и созерцаемая картина зари. Способность воображения позволяет актуализировать несуществующее, делая его сущим (с.296-297). Точно также становится сущим и прошлое, которое актуализируется, благодаря памяти. Августин пишет: "Совершенно ясно теперь одно: ни будущего, ни
прошлого нет, и неправильно говорить о существовании трех времен: прошедшего настоящего и будущего. Правильней было бы, пожалуй говорить так: есть три времени - настоящее прошедшего, настоящее настоящего и настоящее будущего. Некие три времени эти существуют в нашей душе и нигде в другом месте я их не вижу: настоящее прошедшего - это память; настоящее настоящего - его непосредственное созерцание; настоящее будущего - его ожидание" (с. 297, курсив мой - Г.Г.).
        Целостность предмета (или ситуации) восстанавливается, следовательно, благодаря памяти и воображению. Вспомним, что нечто подобное предполагал и Брауэр: рассматривая когнитивную деятельность человека, он представлял ее в виде последовательности дискретных актов. Важной характеристикой мысли была для него при этом не только способность продолжить последовательность, совершив очередной акт, но и способность "удерживать достаточно длинную цепь 'вещей' с тем, чтобы иметь возможность перейти мысленно от последней к более ранней." Здесь однако нет еще решения проблемы. Обращение к памяти не позволяет создать целое, поскольку актуализируя прошлое, мы обращаем в след (или в память) настоящее (которое, впрочем, тут же становится прошлым). Если пользоваться примером Августина, то воображаемый восход солнца, как актуальное и явленное в настоящем представление, заставляет отвлечься от созерцания зари. Последнее перестает быть созерцанием, а становится следом, удерживаемом в душе. Даже если зрелище зари само по себе никуда не делось, оно станет актуальным для нас только тогда, когда мы, отвлекшись от
воображаемого восхода, вновь обратимся к его непосредственному созерцанию.
        Некоторый намек на разгадку Августин дает, когда возвращается к проблеме сопоставления временных промежутков. Мы можем измерить промежутки времени, сопоставляя их друг с другом, поскольку в душе сейчас присутствует память о них. "В тебе, душа моя, измеряю я время... Впечатление от проходящего мимо остается в тебе, и его-то, сейчас существующее, я измеряю, а не то, что оставило" (с. 305). Следовательно, наряду с протекающим должно быть какое-то странное вневременное представление о целом временном промежутке. К нему, как к целому должна существовать возможность обратиться 'сейчас', в настоящем. Причем не к нему одному, но к нескольким сопоставляемым интервалам одновременно. Но точно также, как об интервале времени, можно говорить о любом предмете, который, будучи представлен как последовательность точечных актуализаций, должен также присутствовать как целое, в любой момент актуальное представление. Но такое представление не может быть действительным объектом. Мы определяем время последовательностью синтетических актов, в результате которых появляется ряд действительных объектов. Целое, строящееся
из этих объектов как элементов, может быть только следом и никогда не обнаруживается актуально. В любой момент присутствующее может быть только вне времени, но это не есть действительность. Действителен лишь единичный воспринимаемый объект, а то, что представлено в любой момент не единично. Оно либо материально, либо в воображении может быть воспроизведено многократно, а потому является общим для многих актуализаций. Иными словами, речь здесь может идти о трансцендентальной схеме, вневременной структуре конструируемого в дискурсе объекта. Если что и может помочь нам удерживать представление о предмете как о целом, то только она. Однако детальное рассмотрение всего, что касается схематизма, как уже не раз отмечалось в настоящей работе, вызывает естественное затруднение.
        Общность трансцендентальной схемы многим единичным объектам составляет существо второй проблемы, которая, как мы увидим, столь же стара, как и первая. Вопрос состоит в следующем: почему, воспроизводя второй раз некоторую конструкцию, мы знаем,что строим именно эту конструкцию, а не какую-либо другую? Почему, например, доказав один раз теорему о внутренних углах треугольника и произведя при этом соответствующее построение, мы не сомневаемся в возможности сделать это же самое построение еще раз, доказав вновь эту же теорему. Мы имеем веские основания для различения построенных конфигураций (они отличны по времени), но основания для их отождествления остаются пока проблематичными.
        Возможность отождествления отличных по времени единичных конструкций эквивалентна общности суждения или синтезируемого этим суждением понятия. Суждение является общим поскольку справедливо для любого предмета, построенного сообразно данному понятию. Но должны быть основания для того, чтобы считать данное понятие общим для многих объектов. Каждый из этого множества объектов конструируется сообразно одному и тому же понятию, т.е. сообразно одной и той же трансцендентальной схеме. Но что значит "одна и та же"? Отождествляя построенные по одной и той же в разное время объекты, мы ссылаемся на тождественность схемы как на критерий. Но тогда мы должны обладать каким-то критерием для отождествления использованных в разное время схем, что тут же обеспечивает регресс в дурную бесконечность. Даже если мы будем считать, что схема остается одной и той же в смысле нумерического единства, как одна и та же вещь, то проблема отождествления не решается, поскольку мы не имеем каких-либо оснований для утверждения, что в очередной раз обратились к той же схеме (подобно, например, тому, как каждый раз, забивая
очередной гвоздь, мы берем тот же самый молоток).
        Понятие о нумерическом единстве (или единстве по числу) исключительно важно для нашего рассуждения и должно быть надлежащим образом уточнено. Боэций ([9] с. 45) пишет о "различии по числу" как о "различии при перечислении". "Когда мы говорим: 'Вот это - Платон, а вот это - Сократ' - мы получаем две единицы; точно также если бы мы коснулись пальцем обоих, говоря: 'Один' - о Сократе, 'Еще один' - о Платоне, мы перечислили бы две разные единицы". Из этого отрывка следует, что единство по числу подразумевает индивидуацию с помощью непосредственного указания. Заметим, что именно это происходит в экспозиции теоремы, где непосредственно предъявляется единичный объект построенный здесь и сейчас. Сама единичность, таким образом, эквивалентна непосредственному указанию ("Вот это"), которое есть не что иное как актуализация объекта, связанная с данным моментом времени, с настоящим. Из этого следует, что ни о каком нумерическом единстве схемы не может быть и речи.
        Ситуация удивительным образом воспроизводит проблему универсалий. Вопрос о том, как общие понятия присутствуют в единичных вещах приводит ровно к тем же затруднениям. Вид присутствующий в различимых индивидах может быть либо един, либо множествен. Первый случай невозможен из-за того, что в этом случае нумерически одно должно находится сразу во многих местах. Второй же приводит к бесконечному умножению видов, ибо у всего множества, называемого одним видом, должно быть нечто общее, что собственно и делает вид одним. Потому что - как пишет Аристотель - "Если здесь не один и тот же вид бытия, то у них было бы только имя общее, и было бы похоже на то, как если бы кто называл человеком и Каллия и кусок дерева, не усмотрев никакойобщности между ними" (Метафизика I,9).(См. примечание 6)
        Последняя трудность, на которую мы обязаны обратить внимание, связана с принципом "темпоральности", лежащем в основе разрабатываемого здесь подхода к дискурсу. Мы видели, что основой всякого различия между актуальными объектами является различие во времени. Именно структура таких различий задана схемой. Последняя не может определять ничего, кроме соотношения длительностей временных интервалов между точечными синтетическими актами. Дискурс оказывается последовательностью действий по конструированию элементарных (различимых лишь по времени) объектов. Но тогда мы можем объяснить только одномерную конструкцию, прямую линию. Понятая так трансцендентальная схема исключает одновременность и многомерность в восприятии объекта. Кант указывал на абсурдность описанной ситуации, находя в ней аргумент против "проблематического идеализма" ([30], с. 626-630). Он отмечал, что представление (даже с помощью одного лишь воображения) трехмерных объектов невозможно без обращения к внешнему чувству, т.е. к пространству. Внутренне чувство (время) обладает одним измерением и, опираясь только на него, нельзя мыслить
пространственные конфигурации. Кант видит здесь довод против скептицизма Декарта суть которого он излагает так: "Проблематический идеалист признает, что мы воспринимаем изменения посредством нашего внутреннего чувства, но он отрицает, что на этом основании можно заключать о существовании внешних предметов в пространстве" (с. 626-627). Нам, однако, представляется, что указанная сложность присуща также и самой кантовской философии именно в силу центральной роли схематизма для познавательной способности. Схема дает правило для определения времени и совершенно невозможно понять, как она может быть прообразом или правилом конструирования пространственного объекта. Здесь остается лишь вновь сослаться на цитированное уже место из "Критики чистого разума" о "сокровенном в недрах человеческой души искусстве" (B181).
        Примечания к Главе 3
        1. Во всяком случае в таблице категорий, приводимой в "Аналитике понятий", второй из категорий модальности названо именно "существование" (B106), тогда как в "Аналитике основоположений" фигурирует термин "действительность". вернуться в текст
        2. В [76], с. 96-99 совершенно точно указывается на необходимость различать "реальное" и "действительное". В противном случае выражение "реальная возможность" окажется оксюмороном. Реально то, что получено в результате синтеза, совершенного сообразно условиям опыта. Все действительное реально. Но реальным может быть и возможное. Вообще введение термина "реальный" представляется оправданным именно в смысле противопоставления реальной и логической возможности. вернуться в текст
        3. Рассматриваемая далее структура античной теоремы была описана Проклом в "Комментариях к первой книге начал Евклида". См. комментарий к первому предложению в [78], c. 180-181. Интересная интерпретация этой, установленной у Прокла структуры имеется в статье А.Родина "Теорема" [49]. Родину принадлежит перевод на русский язык терминов, используемых Проклом для обозначения частей теоремы. вернуться в текст
        4. В [76] приведена довольно обширная литература по вопросу трансцендентального схематизма. Там же указано на многочисленные (и на наш взгляд вполне оправданные) жалобы многих исследователей на трудность и темноту данной проблемы. вернуться в текст
        5. Проблема взаимодействия звучащего и незвучащего в музыке подробно рассмотрена в книге М. Аркадьева [3]. В ней музыкальное произведение представлено как развертывание звучания в непрерывной незвучащей среде, названной автором "музыкальным временем". Последнее не является безразличным вместилищем для звуков, но находится с ними в сложном взаимодействии. Подобное описание музыкального произведения оказывается неожиданно близким к нашему представлению математического дискурса. вернуться в текст
        6. Рассуждение указывающее на трудность в рассмотрении общих понятий, связанную с их бесконечным умножением, была впервые указана у Платона в "Пармениде", а затем у Аристотеля в "Метафизике" (I,9). В обоих случаях, впрочем, аргументация несколько отлична от приводимой здесь, поскольку речь в названных книгах идет о самостоятельном (или, как выражается в [35] Г.Г. Майоров, "субсистентном") существовании идей. Наше рассуждение ближе к рассуждению Боэция ([9], c.25). вернуться в текст
        ГЛАВА 4 Именование и существование в структуре дискурса
        1 Имя и действительность
        Изучая структуру теоремы, мы оставили без внимания одно важное обстоятельство. Актуализируя впервые возможное понятие, т.е. предъявляя в экспозиции единичный действительный объект, мы не просто нарисовали его, но еще произнесли при этом: "Пусть ABC - треугольник".
        Приведенная фраза указывает, прежде всего, на то, какое возможное понятие было актуализировано в экспозиции. Но кроме того, она еще называет объект, появившийся при этом событии. Выделение соответствующей понятию единичной конструкции сопровождается именованием. Последнее можно считать (в данном примере) неизбежным следствием актуализации. Единичный предмет может быть назван и тем отлич?н от других единичных предметов. Однако, поскольку по поводу этого единичного предмета разворачивается некий дискурс, он не только может, но и должен быть назван. Имя призвано указывать на этот предмет в ходе дальнейшего дискурса. Имя свидетельствует о наличности этого предмета, его постоянной предъявленности рассуждению. Иными словами, имя есть коррелят действительности предмета (или объекта что в данном случае более точно). Можно считать, что именование неизбежно происходит при актуализации, поскольку даже если мы не придумаем для объекта особого имени (как, например, ABC), то мы все равно должны будем сопровождать его появление каким-то указательным местоимением (этот треугольник) или хотя бы жестом. В противном
случае актуализация просто не будет замечена. Имя фиксирует актуальный объект для последующего дискурса. К нему происходят многократные обращения, т.е. оно само постоянно воспроизводится в виде некоторого следа. Но многократность воспроизведения означает наличие схемы, по которой это имя произведено и благодаря которой оно может быть опознано как одно и то же при разных воспроизведениях. К имени, следовательно, мы должны применить тот же набор категорий, который применялся к именуемому объекту. Во всяком случае, написанное или произнесенное имя само является действительным объектом, а именование событием, актуализацией, предъявлением этого единичного объекта. Впрочем, пока мы обязаны констатировать некую несамостоятельность имени. Дискурс разворачивается не о нем. Более того, не ставится вопрос о его возможности. Оно возможно всегда, когда возможен обозначаемый им предмет. Хотя возможно оно и само по себе, и вскоре мы увидим насколько это важно. Пока что отметим еще, что для имени в любом случае важна необходимая связь элементов. Назвав треугольник ABC, мы в дальнейшем не можем поставить на место
какой-либо из этих букв - другую. Это сразу приведет к разрушению дискурса.
        Итак, оставаясь зависимыми от именуемого объекта, имена все же обретают собственную объективность. Эта объективность состоит в том, что они конструируются согласно определенным общим правилам и появляются в дискурсе как действительные объекты. Это особенно ясно видно при фиксации в дискурсе геометрических конструкций, появившихся в результате определенных операций над более простыми конфигурациями. Так, например, построив угол, равный сумме двух других, названных a и b, мы конструируем новое имя: a+b. Такое конструирование может оказываться важной составляющей для тех двух частей теоремы, которые описывают единичный объект - для детерминации и доказательства. Причем конструирование имен может породить новый дискурс, разворачиваемый как правило в пределах двух названных частей. Здесь могут фигурировать общие суждения, относящиеся к именам. Таковы, например, общие посылки в силлогизмах 4 и 5 в 2 третьей главы.
        Однако, обладая некой объектностью, имена все же не являются здесь объектами в полном смысле слова. Пока мы не можем определить особого понятия, которое бы актуализировалось с помощью имени. Они остаются как бы соучастниками актуализации тех понятий, которые являются основными для дискурса, т.е. понятий геометрических объектов. Потому событие именования представляется здесь вторичным по отношению к событию построения. Однако способность имени превращаться в самостоятельный объект оказалась небезразличной для других разделов математики. 2 Математический дискурс, основанный на именовании
        Как самостоятельный объект имя выступает прежде всего в алгебре. Чтобы убедиться в этом, следует рассмотреть построение алгебраической теоремы и попытаться найти в ней те части, которые присутствовали в теореме геометрии. Легко убедиться, что алгебраическая теорема действительно поддается тому же самому расчленению. Однако в ней обнаруживаются интересные особенности.
        Рассмотрим пример. Известная теорема утверждает, что любой полином с комплексными коэффициентами может быть представлен в виде произведения линейных множителей, количество которых равно степени полинома.
        Приведенное общее утверждение естественно рассматривать как protasis теоремы. Мы имеем дело с предположением о возможности общего понятия, которое должно быть реально синтезировано в ходе доказательства. Естественный ход, который в любом учебнике алгебры является прологом к доказательству, полностью повторяет экспозицию и детерминацию евклидовой теоремы. Ход этот осуществляется примерно так:
        Пусть имеется полином a0+a1 z+....+an zn , тогда
        a0+a1 z+....+an zn = an (z-z1)...(z-zn),
        где z1,..zn - комплексные числа.
        Очевидно, что все использованные в приведенной записи буквы суть имена чисел, которые могут быть подставлены вместо них в выражение. Но из этих имен создана совершенно самостоятельная конструкция, единичный объект, построенный по определенным правилам сообразно своему понятию. Как и в геометрии произведен переход от общего утверждения к единичному предмету. Все последующие действия будут состоять в построении новых объектов более сложной конфигурации, состоящих из символов, т.е., в конечном счете из имен. Однако тот факт, что каждый символ, входящий в конструкцию, может в принципе указывать на какое-то число, не особенно важен для алгебры.
        Дальнейшее развертывание теоремы обнаруживает еще одно знаменательное отличие от геометрии. В ней, на первый взгляд, нет дополнительного построения. После экспозиции и детерминации сразу же следует доказательство, которое, как и в геометрии, есть процедура, оперирующая с именами объектов. Но что представляет собой эта процедура в данном случае? Это - последовательность алгебраических выкладок, совершаемых по определенным правилам. Иными словами - это конструирование знаковых объектов, связанных в производимой последовательности формул согласно законам алгебры. В конечном счете, все доказательство оказывается созданной по правилам единой конструкцией, в которую утверждение теоремы (точнее, детерминация) включено в качестве составной части. Следовательно, доказательство и дополнительное построение в данном случае попросту совпадают. Текст доказательства и есть здесь та конструкция, которая актуализирует интересующее нас понятие (то понятие, возможность которого предполагалась в утверждении теоремы).
        Обращаясь к кантовскому разделению способностей, мы должны констатировать, что проведение доказательства (наряду с воображением и рассудком) проводится при помощи рефлектирующей способности суждения. Построение необходимой последовательности выкладок требует некоторой обобщающей догадки, благодаря которой все фиксированные в экспозиции и детерминации объекты, а также уже доказанные утверждения (т.е. ранее сконструированные объекты), нужные для доказательства, оказываются объединены в одной конструкции.
        Дискурс, разворачиваемый в арифметике, оказывается значительно сложнее алгебраического. Здесь можно выделить три типа конструируемых объектов. Прежде всего, арифметика всегда подразумевает некоторую пространственную структуру, на которую можно непосредственно указать, описывая любую арифметическую операцию. Арифметическое утверждение также можно разложить на выделенные нами ранее части, указывая при этом в экспозиции на единичный протяженный объект, создаваемый согласно заданному правилу. В знаменитом кантовском примере - о суммировании чисел пять и семь - мы можем построить соответственно пять и семь точек или пять и семь последовательных отрезков на числовой прямой (и даже положить рядом пять и семь яблок). С помощью пространственных конструкций мы можем демонстрировать сложение, вычитание, деление, умножение, вводить отрицательные, дробные и даже иррациональные числа. (См. примечание 1) Но каждая такая операция, представляющая собой актуализацию определенного арифметического понятия, предполагает также и именование конструируемых объектов. Пользуясь определенной системой счисления, мы
присваиваем протяженным конструкциям имена, являющиеся названиями чисел. Но пользуясь такими именами вкупе с названиями операций, мы производим конструкции совершенно иного рода. Мы создаем, прежде всего, сами числа, сообразуясь с правилами, заданными системой счисления. Мы создаем выражения, содержащие эти числа, и даже длинные тексты, включающие подчас весьма специфические конфигурации. В этом конструировании мы можем продвигаться достаточно далеко, вовсе не обращаясь к соответствующей протяженной конструкции, а используя наглядные представления совершенно иного вида.
        Многие авторы (см., например, [64], [80], [83]) говорят об абстрактности арифметики, имея в виду отвлечение от протяженных конфигураций и их особенных признаков при определении числовых операций. Однако, важно иметь в виду, что в арифметическом дискурсе происходит конструирование совершенно конкретного единичного объекта. Несмотря на то, что правила этого конструирования существенно отличаются от геометрических, работа всех трех способностей субъекта остается той же самой. При рассмотрении любого арифметического утверждения воображение строит объект, согласно правилам, предписанным рассудком, а проведение достаточно сложного вычисления требует и обобщающей догадки (т.е. дополнительного построения), которая делается способностью суждения. (См. примечание 2)
        Однако арифметический дискурс включает и именование иного рода, нежели обозначение протяженных конструкций с помощью чисел и числовых операций. Очень часто при формулировке каких-либо утверждений о числах пользуются буквенными обозначениями. В таком случае, вместо единичного объекта, который следовало бы предъявить при экспозиции, возникает знаковая конструкция, являющаяся именем того объекта, о котором идет речь. Здесь возникает несколько странных особенностей. С одной стороны знаковая конструкция в арифметике замещает не один, а множество подобных числовых объектов. Она носит общий характер, причем эту общность следует понимать не как общность абстракции, а как общность структуры. Если, например, вместо нечетного числа мы пишем '2n+1', то вводим принцип порождения всех объектов, соответствующих заданному общему понятию. С другой стороны, вводя имена, мы пользуемся ими и построенными из них выражениями как единичными объектами. Работая с именами, мы производим пространственно определенные конструкции, создаваемые воображением и представимые в созерцании. Сам способ введения этих имен полностью
соответствует экспозиции в геометрической теореме. Так, сформулировав общее утверждение о свойствах целых чисел, мы, переходя к его доказательству, произносим: "Пусть n целое число, тогда" и т.д. Дальнейший дискурс вообще ничем не отличается от алгебраического. Однако при доказательстве алгебраической теоремы конструируется объект того же вида, что и любой другой, для которого справедлива теорема. Разумеется, вместо a0+a1 z+....+an zn можно написать b0+b1 x....+bm xm , но ничего принципиально иного здесь появиться не может. Точно так же при доказательстве геометрической теоремы мы могли использовать остроугольный треугольник и считать потом, что она справедлива также и для тупоугольного. В арифметике же буквенные выражения есть имена числовых (или даже протяженных) объектов, которые, однако, вообще не конструируются в дискурсе. Конструируется совершенно не тот объект, о котором ведется рассуждение. "Тот" объект, конечно же может быть в любой момент предъявлен, но в дискурсе он не присутствует.
        Таким образом в арифметике происходит именование непостроенного объекта, некая квазиактуализация понятия. Работа со знаковой конструкцией в арифметике подобна работе с такой же конструкцией в алгебре, но в алгебре эта конструкция представляет собой одновременно и предмет исследования, а в арифметике только имя этого предмета. Ее нужно рассматривать как некую систему пустых мест, на которые должны быть поставлены любые объекты определенного вида. Тот факт, что вместо объектов можно работать с их именами, организованными в определенную структуру, обнаруживает, что для развертывания дискурса нам важны не сами эти объекты, а отношения между ними. Но немаловажно еще и то, что развертывание дискурса приводит к объективизации отношений. Наше рассуждение обязательно должно быть отнесено к остенсивно определяемому предмету, к пространственной конструкции протяженной или знаковой.(См. примечание 3)
        Итак именование представляет собой актуализацию предмета даже тогда, когда сам этот предмет не конструируется. Такой ход характерен не только и даже столько для арифметики, сколько для тех сфер математики, которые пытаются работать с бесконечными предметами. Введение предельных понятий, например, в том и состоит, что для объекта, точнее квазиобъекта, неконструируемого предмета находится имя, актуализирующее его в дискурсе. При этом дальнейшее развертывание дискурса оказывается все же вполне конструктивной процедурой, но строится в этой процедуре не предмет исследования, а последовательность выражений, интерпретируемых как высказывания об этом предмете. Например, обозначив предел числовой последовательности буквой 'a', мы можем строить знаковую конструкцию по правилам, предписанным определением предела. Любая теорема о существовании предела последовательности будет в этом случае предположением возможности названного понятия. Но чтобы показать эту возможность, нужно конструировать не саму эту последовательность вместе с ее пределом, а рассуждение о пределе, записываемое по определенным формальным
правилам.
        3 Дискурс имен и неконструктивные "объекты"
        Именование делает математику способной рассматривать как действительные те предметы, которые никак не могут быть непосредственно построены. Возможность соответствующего этим предметам понятия обнаруживается, однако, по той же самой схеме, которую мы описали выше. Но конструкцией (играющей роль геометрического дополнительного построения) будет в этом случае сам дискурс, само математическое рассуждение, которое строится по определенным правилам. Неконструктивность исследуемых предметов вновь необходимо делает создаваемую знаковую конструкцию той самой системой пустых мест, о которой мы говорили выше. Но если в арифметике на пустое место всякий раз мог быть поставлен сконструированный объект, то в тех областях математики, которые "имеют дело с бесконечностью", туда нечего поставить, кроме имени.
        Последнее означает, что существование в этом случае может быть понято только как существование элемента в структуре отношений. Хотя нельзя игнорировать и иную возможную интерпретацию существования предмета, актуализируемого с помощью имени. Можно (в духе математического реализма) считать, что используемое в рассуждении имя есть имя сущности. Эта идеальная сущность определяется через ряд атрибутов или свойств и предполагается пребывающей независимо от всякого дискурса. В рассуждении можно, исходя из известных, определяющих свойств обнаружить еще ряд неизвестных, увеличив таким образом наше знание о сущности. Но такая интерпретация требует очень жестких мер предосторожности. Называя те предметы, которые мы не можем построить, мы рискуем начать рассуждать о чем-то вовсе не существующем и стать жертвами иллюзий и беспочвенных спекуляций. На эту опасность указывал в свое время Беркли. Считая имя специальным знаком, предназначенным для обозначения идей (т.е. воспринимаемых чувствами вещей, которые существуют именно потому, что воспринимаются), он утверждал, что процедура именования создает иллюзию
абстрактных понятий, поскольку имена начинают рассматривать отдельно от тех идей, которые они обозначают. (См. примечание 4) В математике, впрочем, происходит нечто еще более опасное - слова не просто отделяются от своих предметов, но возникает возможность конструировать новые слова, которым не соответствуют никакие идеи. Именно такими беспредметными образованиями считал Беркли понятия "флюксия", "дифференциал", "бесконечно малая величина". Использование таких понятий в рассуждении чревато, по мнению Беркли, серьезными противоречиями и ошибками (которые он сам пытался обнаружить в современных ему работах по дифференциальному и интегральному исчислению - см. [8] c.406-407, 410-420). Трудно сказать, в какой мере последующее развитие математики опровергло рассуждение Беркли о противоречивости математического анализа, однако появление известных парадоксов теории множеств также связано с попыткой именования невозможных сущностей. Именно такой сущностью является, во всяком случае, канторовская W - пример, показывающий, что, определив общее понятие и попытавшись с помощью имени актуализировать
соответствующий ему предмет, можно получить противоречие ([31],c. 365). Ясно, что такой подход требует принятия некоторых ограничений (или, как говорил Кант, дисциплины). С другой стороны, также ясно, что ограничение, предлагаемое, например, Беркли, и состоявшее в том, чтобы не выходить за пределы рассмотрения чувственно воспринимаемых объектов, слишком обременительно для математики. (См. примечание 5)
        Если вернуться к рассмотрению структуры дискурса, то в нем, как мы видели, присутствуют имена различных предметов - как представимых созерцанию конструкций, так и квазиобъектов, которые невозможно сконструировать. Помимо предела последовательности, таковыми являются, например, бесконечно удаленная точка в проективной геометрии или канторовские трансфинитные числа. Мы видели, однако, что сам дискурс, оперирующий с именами этих квазиобъектов, все же является конечной конструкцией - именно на такой посылке основывается гильбертовская программа обоснования математики. Допустимость использования неконструируемых предметов обосновывается исследованием самого дискурса, в котором их имена должны занять определенное место.
        Сейчас нам представляется уместным вновь вернуться к гильбертовскому пониманию существования, и взглянуть на него с точки зрения рассмотренных нами выше категорий.
        Общее утверждение о неконструктивном объекте (или идеальном элементе, если следовать терминологии Гильберта) есть предположение о возможности соответствующего понятия. Однако характер исследуемого предмета не позволяет, как это было в финитном случае, непосредственно актуализировать понятия, фигурирующие в данном утверждении. Поэтому используется квазиактуализация, сводящаяся к простому именованию идеального элемента (или нескольких идеальных элементов, понятия которых обсуждаются). Доказательство утверждения, будучи знаковой конструкцией, создаваемой сообразно схеме понятия, (именно того понятия, возможность которого устанавливается) является, как и в любом алгебраическом рассуждении, построением, актуализирующем это понятие. Понятие возможно потому, что мы в состоянии предъявить конечную знаковую конструкцию, т.е. соответствующий ему действительный объект. Действительность этого объекта означает, что его конструирование велось не просто в соответствии со схемой данного понятия, но и правилами, предписанными для конструирования любого объекта (т.е. любого доказательства) данной теории. Здесь,
между прочим, вполне точно воспроизводится ситуация с геометрической теоремой, рассмотренная нами в предыдущей главе. Там объект, созданный в результате дополнительного построения, был действительным потому, что создавался по правилам, предписанным евклидовыми постулатами. Точно также и доказательство конструируется сообразно с аксиомами данной теории. Однако необходима важная оговорка по поводу самих этих аксиом. Нужно, чтобы любой объект, создаваемый по предписанным ими правилам обладал свойством непротиворечивости. Это, как мы говорили выше, вполне конструктивное свойство, приписываемое конечному и доступному созерцанию предмету в результате синтеза, производимому в метатеории.
        Действительность объекта, конструируемого при доказательстве, есть необходимое и достаточное условие действительности элементов создаваемой конструкции. Именно так следует понимать существование идеальных объектов. Они существуют, если их имена актуализированы в реально созданной (т.е. действительной) конструкции. То же самое условие следует рассматривать как условие возможности понятия идеальных элементов. Поскольку действительность построения включает непротиворечивость конструкции, то оказывается, что возможность понятий эквивалентна отсутствию противоречия в теории, использующей эти понятия. Мы, следовательно пришли к весьма специфическому пониманию логической возможности - выяснилось, что логическая возможность совпадает с реальной.
        Итак, о существовании идеальных объектов можно говорить лишь постольку, поскольку они являются элементами в структуре дискурса. Более того, само их введение служит целям построения дискурса. Е.Д. Смирнова, интерпретируя Гильберта, утверждает, что "идеальные образования и утверждения, выводящие за пределы высказываний о конкретных конфигурациях, реализуемых в пространстве и времени, следует рассматривать как фикции, используемые лишь для удобства выводов" ([51], c.239). При этом важно помнить, что сами выводы также являются пространственно-временными конфигурациями. Предположение о возможности таких объектов есть акт рефлектирующей способности суждения. Это гипотеза, позволяющая представить ряд уже имеющихся конструкций (реальных объектов) в виде единой объемлющей конструкции, завершенного дискурса - доказательства или целой теории. Дискурс включает в себя имена идеальных элементов, подобно тому, как эллипс, описывающий орбиту небесного тела, включает в себя все места в пространстве, в которых это тело может оказаться. Чтобы ввести идеальный элемент, нужно уметь предвидеть структуру дискурса, в
которой этот элемент займет нужное место. (См. примечание 6)
        Примечания к Главе 4
        1. Все это прекрасно описано, например, в "Геометрии" Декарта. вернуться в текст
        2. Таким "дополнительным построением" является, например, умножение в столбик многоразрядных чисел. Поскольку, впрочем, эта операция освоена всеми в начальных классах школы, то для ее выполнения вовсе не нужно действия рефлектирующей способности суждения. Можно однако представить себе как действует эта способность, если названный метод вычисления находится нами впервые и мы располагаем лишь общим определением умножения и рядом единичных примеров перемножения одноразрядных чисел. Вообще действие рефлектирующей способности суждения становится очевидным при выполнении такого вычисления, для которого не разработано общей методики. вернуться в текст
        3. Именование непостроенного объекта происходит и в алгебре. В нашем примере оно также имело место, когда мы обозначили степень полинома буквой 'n'. вернуться в текст
        4. Сам Беркли считал, что никакими общими понятиями человек обладать не может. Есть лишь общие слова, служащие для обозначения многих частных идей ([6], c.158-162). вернуться в текст
        5. Рассуждение Беркли может иметь нечто общее с брауэровским проектом построения математики. Желание ограничить предмет математики конечными числовыми конструкциями, полностью представимыми в воображении, близко к намерению не выходить за пределы чувственных восприятий. Хотя оба мыслителя совершенно по-разному представляли себе деятельность математика и природу математических объектов, однако их сближает некий радикализм в попытке ограничения сферы исследования этой науки. Насколько нам известно, в истории математики нет других примеров такого рода - когда бы предлагалось практически ликвидировать целые математические дисциплины. вернуться в текст
        6. Е.Д. Смирнова, сопоставляя взгляды Гильберта с философией Канта, указывает на связь идеальных элементов с трансцендентальными идеями разума. Именно действие разума позволяет выйти за рамки пространственно-временных отношений и перейти к рассмотрению понятий, не описывающих ничего, что лежало бы в ряду явлений. Мы не можем согласиться с такой интерпретацией, поскольку, считаем, что своим появлением в математическом рассуждении идеальные элементы обязаны не разуму, а способности суждения. Хотя при определении этих элементов и происходит "отлет от реальности" (выражение Е.Д. Смирновой), но все же их введение приводит к созданию новой реальности - дискурсивной конструкции, разворачиваемой в пространстве и времени. (Заметим, что слово "реальность" понимается здесь строго в кантовском смысле - см. Примечание 2 к Главе 3.) Акт рефлективной способности суждения как раз и подразумевает такое, если можно так выразиться, квази-трансцендирование, уход от реальности наличного опыта (но не выход за пределы возможного опыта). Именно в таком действии и состоит смысл финитной установки - всякое обоснование
должно быть основано на предъявлении конечного, доступного созерцанию объекта. Поэтому для понятия идеального элемента (например, для понятия бесконечно удаленной точки или трансфинитного числа) чувства могут дать адекватный предмет (ср. B383 "Под идеей я разумею необходимое понятие разума, для которого чувства не могут дать адекватного предмета."). Дискурсивная конструкция в самом деле есть адекватный предмет для понятия идеального элемента, поскольку помимо этого дискурса его вообще невозможно мыслить. Трансцендентальные идеи призваны играть в рассуждении иную (хотя в чем-то и близкую) роль нежели идеальные элементы. Идея создает целостность условий, т.е. безусловное единство в бесконечном ряду обусловленного (см. B379). Идеальные элементы также создают единство, но отнюдь не безусловное, а весьма относительное. Введение числа w - порядкового типа множества натуральных чисел - создает единство в натуральном ряду, т.е. является условием единства натурального ряда. Но порядковые типы можно множить до бесконечности, причем каждое последующее будет условием единства для ряда предыдущих. Единственное,
что может претендовать на роль трансцендентального понятия, - это "множество всех чисел", которое нельзя мыслить без противоречия. Трудно сказать, есть ли прямая связь между антиномиями чистого разума и канторовскими парадоксами, но определенная аналогия все же усматривается. вернуться в текст
        Заключение
        В качестве итога проведенного исследования мы можем теперь определить ряд выявленных в нем онтологических категорий.
        Первой в этом ряду категорий должна быть указана конструкция, обозначающая результат пространственно-временного построения. Конструкция всегда явлена в пространстве и представляет собой продукт некоторой регулярной (т.е. подчиненной правилу) деятельности. Этот продукт является созерцанию благодаря действию способности воображения. Выделяя временной аспект, мы должны рассматривать конструкцию как след. Выделяя аспект целесообразности, мы называем конструкцию объектом. Всякая конструкция строится для того, чтобы решить определенную задачу. Мы должны ответить на вопрос, связанный с определенным образом построенным объектом. Но ответ на вопрос является результатом "встраивания" этого объекта в более общую, объемлющую его конфигурацию. Особенно это важно при решении вопроса о существовании. Суть всякого исследования сводится к построению конструкции определенного рода, в которой исследуемый объект занял бы определенное место.
        Конструкция, включающая в себя объект, называется дискурсом. Категория дискурса собственно и определяется таким включением. Но этим же включением определяется и категория объекта. Последний не может быть изолированной конструкцией. Он является объектом, поскольку является предметом дискурса.
        Но предметом дискурса может стать любая завершенная конструкция. В том числе и сам дискурс. В метаматематике Гильберта это проявляется особенно ясно. Гильберт сознательно делает доказательство (т.е. дискурс) объектом иного дискурса.
        Однако любое математическое и естественнонаучное исследование подразумевает такое расширение конструктивной деятельности. Если мы интерпретируем построенную конструкцию как факт, то для этого факта следует искать объясняющую гипотезу. Заметим, что факт означает не только построенный объект, но и установленное в рамках некоторой конструкции отношение объектов, т.е. по существу тот же дискурс. Следовательно, перед нами открывается перспектива неограниченного роста дискурса (или безграничного конструирования объектов). Такая перспектива требует указания горизонта упомянутого роста, своего рода объясняющей гипотезы (впрочем, совершенно иной, нежели общая конструкция рефлектирующей способности суждения). Если мы, вслед за Кантом, будет рассматривать новое объемлющее построение как условие ряда предшествующих конструкций, то нам требуется указать понятие (которому, однако, уже не будет соответствовать никакая конструкция) являющееся безусловным в ряду всех возможных конструкций или, иными словами, абсолютным условием всех возможных дискурсов.
        Речь, следовательно идет о том, что Кант называл трансцендентальной идеей. Обращение к ней позволяет рассматривать безграничный ряд связанных друг с другом явлений как ограниченное проявление некоторого общего принципа. Наличие такого принципа позволяет предполагать, что наше ничем не ограниченное восхождение от частных построений к все более общим совершается так, как если бы некий рассудок уже построил какую-то глобальную конструкцию, которую мы только изучаем (а не создаем).
        Нам представляется, что, если мы говорим об условии всех возможных дискурсов, то трансцендентальной идеей, призванной обозначить это абсолютное единство условий, является язык. Все конструкции, о которых мы говорили ранее, несомненно можно назвать языковыми. Но никакой конструкции, соответствующей понятию языка представить невозможно. С другой стороны мы очевидно мыслим язык, как условие всякого дискурса. Условием дискурса можно, конечно, назвать и общее правило конструирования конкретного дискурса - т.е. рассудочное условие, понятие, задающее схему. Но язык очевидно не относится к числу таковых. Он может быть рассмотрен как неисчерпаемый источник средств для построения дискурса и как бесконечный запас структур. Можно мыслить его как некий сверх-дискурс или как абсолютную логическую форму любого дискурса. Но все это в высшей мере приблизительные описание. Таких - не всегда похожих, но всегда уместных можно найти очень много. Но достигнуть правильного и исчерпывающего описания языка невозможно по той простой причине, что для этого понятия невозможно найти адекватный объект. Иными словами язык можно
рассматривать только как регулятивное понятие. Именно поэтому мы во Введении заявили о о серьезной дистанции, разделяющей понятия "язык" и "дискурс". (Конечно, бессмысленно было бы говорить, что их сближение или даже отождествление ошибочно. Слово дискурс, как мы уже говорили, обладает в современном языке удивительной многозначностью, а потому трактовать его можно весьма разнообразно. Важно только иметь в виду, что дискурс, понятый как язык, неизбежно должен быть рассмотрен как регулятивное понятие.)
        Нам осталось рассмотреть проблему общего в отношении введенных категорий. Всякая конструкция (объект или дискурс) есть нечто действительное, локализованное в пространстве и времени. Но с другой стороны конструкция воспроизводима в любое время и в любом месте. Причем воспроизведение не означает копирования. Воспроизведение означает построение другой подобной конструкции - в ней могут быть использованы другие имена, другие геометрические образы, но сохраняются отношения между элементами, т.е. между тем, куда подставляются имена и образы. Эту совокупность отношений (систему пустых мест) мы называем структурой. Последняя может быть выражена в виде правила или краткой формулы, даже в виде одного слова, устойчиво обозначающего именно эту систему отношений. Такое краткое выражение структуры уместно назвать понятием. Как понятие так и структура всегда лишь возможны. Они актуализируются в определяемых ими конструкциях.
        Понятие структуры достаточно часто используется в лингвистике, причем его употребление достаточно близко к нашему. В [53], например, устанавливается связь между "структурой" и "системой", которой вполне соответствует установленное нами отношение между структурой и конструкцией. "Под системой понимается единое целое, доминирующее над своими частями и состоящее из элементов и связывающих их отношений. Совокупность отношений между элементами системы образует ее структуру. Правомерно говорить поэтому о структуре системы. Совокупность структуры и элементов составляют систему" ([53], c. 228).
        Важно отметить некоторую странность этой категории. Она занимает как бы срединное положение между понятием и конструкцией. Но два последние имеют явное выражение. Понятие может быть задано в виде правила или суждения, конструкция предъявлена в виде созерцания. Между тем структура сама по себе не выражается никак. Очевидна близость между ней и кантовской трансцендентальной схемой, хотя мы воздержались бы от отождествления этих понятий и чуть ниже объясним основания для этого.
        Мы говорили о том, что конструкция неуловима как целое. Сам процесс конструирования есть процесс актуализации частей конструкции последовательность синтетических актов способности воображения. Созданная конструкция обращается в след, а потому понимание предмета как целого оказывается весьма проблематичным. Мы разбирали эту проблему в третьей главе и указали, что представление о целостности предмета возможно лишь потому, что он конструируется сообразно трансцендентальной схеме. В нашем рассуждении мы сопоставили понятию схемы понятие структуры. Всякий дискурс осуществляется так, что его структура (или структура конструируемого объекта) угадывается рефлектирующей способностью суждения. Каждый элемент конструкции создается так, что его отношения с другими элементами становятся сообразны найденной структуре. Структура априорна в том смысле, что предшествует дискурсу и присутствует в каждом конструктивном акте, т.е. при создании каждого элемента. Синтетический акт есть, в конечном счете, установление точки. Но каждая точка вписана в некоторую структуру. Последняя подразумевается независимо от точки.
Она схватывается в каждый момент совершения синтеза. В этом состоит событие. Оно содержательно отлично от синтетического акта тем, что синтез есть присоединение к конструкции очередного элемента в определенный (точнее, определяемый им) момент времени. Событие, состоящее в схватывании структуры, означает понимание.
        Событие может и не сопровождаться никаким синтетическим актом. Таково, например, событие именования. Когда дается имя идеальному элементу, схватывается структура всего дискурса, но не происходит никакого синтеза. Этот синтез лишь предвидится - он будет произведен в будущем с использованием введенного сейчас имени.
        Структура разворачивается в конструкцию и это развертывание есть внешнее выражение происшедшего понимания. Знание структуры может выразиться двумя способами: формулированием общего правила (понятия) или построением единичной конструкции. И то, и другое может быть свидетельством понимания (т.е. происшедшего ранее события - схватывания структуры), но такое свидетельство не является абсолютно надежным. Можно, не понимая и формулировать, и конструировать. Впрочем едва ли можно понять, не выразив свое понимание в конструировании.(См. примечание 1) Последнее, как темпоральное развертывание структуры, можно назвать следом события или рассказом о событии.
        Обращение к категории структуры позволяет выделить в идее языка две составляющие. Прежде всего заметим, что как и в "чувственной" сфере, т.е. сфере конструкций, здесь возможно безграничное расширение структур. Каждая объемлющая конструкция, создаваемая для решения задачи о конструкции, построенной ранее, имеет свою структуру. Причем именно эта структура должна быть установлена (найдена) рефлектирующей способностью суждения. Последняя обнаруживает не конструкцию - ее затем строит воображение в соответствии с уже имеющейся структурой. Но также не находит она и понятие, поскольку одного понятия или общего правила явно недостаточно. Как мы уже говорили, наряду с общим правилом должна быть угадана связь его с уже построенной конструкцией. Нужно суметь, например, не приступая еще к выведению, предвидеть возможность вывода частных высказываний из общего постулата.
        Следовательно, наряду с расширением дискурса происходит и расширение структур. Последнее, на наш взгляд позволяет распознать в идее языка две составляющие: синтаксис и семантику. Язык, существующий в "синтактическом измерении"(См. примечание 2) есть горизонт, очерчивающий возможности расширения дискурса или языковых конструкций. Понятия синтаксиса позволяют описать процедуру конструирования при наличии заданных правил. Проблема состоит в том, чтобы построить правильную языковую конструкцию, т.е. подвести единичный объект под данный общий закон. Синтаксис содержит определенные, на данный момент установленные, структуры, которые в виде общих правил предписываются рассудком способности воображения. Следовательно, говоря о синтактическом измерении языка, мы говорим о действии определяющей способности суждения.
        Но каждая конструкция, будучи языковой, должна быть также рассмотрена как языковой знак.(См. примечание 3) Последнее означает, что конструкции может быть придан некоторый смысл. Если мы имеем в виду математический дискурс, то последнее легко показать на любом тексте математической задачи. Этот текст вполне можно проинтерпретировать в терминах, определяемых треугольником Фреге, поскольку он всегда указывает на некоторый единичный объект, называемый решением. Последнее есть референт данного знака. В частности алгебраическое уравнение указывает, как на референт, на свои корни, неравенство - на множество чисел, ему удовлетворяющих, и т.д. Заметим, что формулировка недоказанной еще теоремы также есть знак, который указывает, как на референт, на конструкцию, создаваемую в ходе построения (kataskeuh). При этом важно иметь в виду, что как знак следует рассматривать не только утверждение теоремы, но (по преимуществу) экспозицию и детерминацию. Но если действительная конструкция, создаваемая при решении задачи (при доказательстве теоремы), составляет референт этого знака, то структуру, актуализируемую в
процессе ее построении, совершенно естественно назвать смыслом. Именно структура должна занимать место в третьей вершине треугольника Фреге.
        Поскольку речь здесь идет о решении задачи, т.е. о построении новой структуры (а не о подведении объекта под уже имеющуюся и предписываемую рассудком в виде общего правила), то вся сфера смысла должна быть связана с действием рефлектирующей способности суждения. Под смыслом следует понимать еще не данное, но лишь искомое правило. Если же задача решена и правило установлено, то всякое последующее обращение к ней будет производится уже определяющей способностью суждения. Решение задачи означает, следовательно, переход рассмотрения языкового знака из семантического измерения в синтактическое, поскольку именно синтаксис является сферой использования предписанных правил. Именно таким правилом является, например, ранее доказанная теорема.
        Указанное различие синтактического и семантического измерений позволяет различить понятия структуры и трансцендентальной схемы, вводимой в "Критике чистого разума". Схему, на наш взгляд, уместно рассматривать как коррелят готового правила. Схема всегда задана вместе с понятием рассудка и использование схем есть задача определяющей способности суждения. Структура еще не задана, а должна быть угадана рефлектирующей способностью суждения, однако будучи раз угадана, она становится схемой.
        Рассмотрев, таким образом, онтологические категории, мы видим, что математическая онтология имеет естественную лингвистическую (или, по крайней мере, семиотическую) интерпретацию. Ранее мы говорили, что решение задачи, рассматриваемое как построение объемлющего дискурса, есть способ установить существование некоторого объекта. Теперь мы видим, что решение вопроса о существовании связано с переменой семиотического статуса языкового знака, переход их сферы семантики в сферу синтаксиса. Объект, существование которого установлено, сам может быть предъявлен в виде знака. Если до построения речь шла об отношении знака к смыслу (к невыявленной еще структуре), то после него это же самое отношение уже может быть рассмотрено как отношение знаков.
        Примечания к заключению
        1. Можно сказать, что конструирование есть необходимое условие понимания. Что же касается формулирования общих правил, то оно возможно и при полном непонимании - Кант довольно едко писал о том знании, которое осуществляется только как общее. Способность усматривать правила "лишь в абстрактной форме" он связывает с недостатком способности суждения, а "недостаток способности есть собственно то, что называют глупостью; против такого недостатка нет лекарства." Далее он пишет: "Тупой или ограниченный ум, которому недостает достаточной силы рассудка, может, однако, с помощью обучения достигнуть даже учености. Но так как вместе с этим подобным людям недостает способности суждения, то не редкость встретить ученых мужей, которые, применяя свою науку, на каждом шагу обнаруживают этот непоправимый недостаток" (B173 - сноска). вернуться в текст
        2. Выражение Чарльза Морриса. В работе "Основания теории знаков" он рассматривает три "измерения семиозиса", различая в каждой знаковой системе отношения знаков между собой (синтактика), отношение знаков к объектам (семантика) и отношение знаков к интерпретаторам (прагматика) ([36], c.42). Это "третье измерение", впрочем, едва ли может иметь отношение к нашему исследованию . вернуться в текст
        3. Выше мы использовали слово "знак" для обозначения некоторого минимально различимого объекта, конструируемого, например, в алгебре или арифметике. Там он мог рассматриваться также и как имя. Говоря при этом о знаковом конструировании мы лишь указывали на особый способ пространственно-временной деятельности, несколько отличной от конструирования геометрических фигур. Однако знак, понятый как элемент такого конструирования, может являться также и языковым знаком, поскольку участвует в создании дискурса. Языковой знак, следовательно, составляет более широкое понятие, чем просто знак. Языковым знаком является всякое выражение языка (языковая конструкция), имеющее смысл. вернуться в текст
        Библиография
        1. Аврелий Августин. Исповедь. Москва, Renaissance, 1991 2. Аристотель. Метафизика. Москва-Ленинград, 1934, перевод А.В.Кубицкого 3. Аркадьев. М.А. Временные структуры новоевропейской музыки. М. 1992 4. Барабашев А.Г. Треугольник Фреге и существование математических объектов //Историко-математические исследования. Вторая серия. Вып. 2(37), Москва, Янус-К, 1997 5. Беляев Е.А., Перминов В.Я. Философские и методологические проблемы математики. Москва, "Издательство Московского Университета", 1981 6. Беркли Дж. Трактат о принципах человеческого знания //Беркли. Сочинения. Москва, "Мысль", 1978, с. 149-247 7. Беркли Дж. Аналитик, или Рассуждение, адресованное неверующему математику //Беркли. Сочинения. Москва, "Мысль", 1978, с. 395-442 8. Беркли Дж. Алкифрон, или мелкий философ. СПб., "Алетейя", 1996 9. Боэций. Комментарий к Порфирию //Боэций. Утешение Философией и другие трактаты. Москва, "Наука", 1990, с.5-144 10. Бурбаки Н. Архитектура математики //Бурбаки Н. Очерки поистории математики. Москва, "Издательство иностранной литературы", 1963, с. 245-259 11. Вейль Г. Математическое мышление. Москва,
"Наука", 1989. 12. Гедель К. Об одном еще не использованном расширении финитной точки зрения// Математическая теория логического вывода. Москва, 1967, с.299-305 13. Гейтинг А. Интуиционизм. Москва, "Мир", 1965. 14. Генцен Г. Непротиворечивость чистой теории чисел// Математическая теория логического вывода. Москва, 1967, с. 77-153 15. Гильберт Д. О понятии числа //Основания геометрии. Москва, 1948, с.320-322 16. Гильберт Д. Об основаниях логики и арифметики //Основания геометрии. Москва, 1948, с.322-337 17. Гильберт Д. О бесконечном //Основания геометрии. Москва, 1948, с.338-352 18. Гильберт Д. Бернайс П. Основания математики. Логические исчисления и формализация арифметики. Москва, "Наука", 1979 19. Гутнер Г.Б. Интерпретация существования в математике //Философские исследования, N 1, 1995, с.212-225 20. Гутнер Г.Б. Онтология математического рассуждения //XI Международная конференция по логике, методологии и философии науки. Обнинск, 1995. 21. Гутнер Г.Б. Дискретность и непрерывность в структуре математического дискурса //Бесконечность в математике: философские и исторические аспекты. М. "Янус-К",
1997, с. 242-265 22. Декарт Р. Правила для руководства ума. //Декарт. Сочинения в 2 томах, т.1, Москва, "Мысль", 1989, с.77-153 23. Декарт Р. Первоначала философии. //Декарт. Сочинения в 2 томах, т.1, Москва, "Мысль", 1989, с.297-422 24. Декарт Р. Геометрия. Москва-Ленинград, ГОНТИ, 1938 25. Ефимов Н.В. Высшая геометрия. Москва, "Наука", 1978 26. Каган В.Ф. Основания геометрии, ч.II, Москва, 1956 г., 27. Кант И. Критика чистого разума. Санкт-Петербург, "Тайм-Аут", 1993 28. Кант И. Критика способности суждения. Москва, "Искусство", 1994 29. Кант И. Пролегомены. Москва, ОГИЗ, 1934. 30. Кант И. Трактаты и письма. Москва, "Наука", 1980 31. Кантор Г. Труды по теории множеств. Москва, "Наука", 1985 32. Кассирер Э. Познание и действительность. Понятие о субстанции и понятие о функции. Изд. "Шиповник", Спб. 1912 33. Кричевец А.Н. Априори, способность суждения и эстетика //Вестник Московского Университета, Серия 7, Философия. 1996. N3, с.41-50 34. Кушнер Б.А. Принцип бар-индукции и теория континуума у Брауэра //Закономерности развития современной математики. Москва, "Наука", 1987, с.230-250. 35. Майоров Г.Г.
Судьба и дело Боэция // Боэций. Утешение Философией и другие трактаты. Москва, "Наука", 1990, с.315-413 36. Моррис Ч.У. Основания теории знаков. // Семиотика. Москва, "Радуга", 1983, c. 37-89 37. Мулуд Н. Современный структурализм. Размышления о методе и философии точных наук. Москва, "Прогресс", 1973 38. Панов М.И. Интуиция, логика, творчество. Москва, "Наука", 1987. 39. Панов М.И. Методологические проблемы интуиционистской математики. Москва, "Наука", 1984 40. Платон. Парменид. // Платон. Собрание сочинений в 4-х томах, т. 2. Москва, "Мысль", 1993, с. 346-412 41. Платон. Филеб. // Платон. Собрание сочинений в 4-х томах, т. 3. Москва, "Мысль", 1994, с. 7-78 42. Платон. Государство.// Платон. Собрание сочинений в 4-х томах, т. 3. Москва, "Мысль", 1994, с. 79-420 43. Платон. Тимей. // Платон. Собрание сочинений в 4-х томах, т. 3. Москва, "Мысль", 1994, с. 421-500 44. Пойа Д. Математика и правдоподобное рассуждение. Москва, Издательство Иностранной Литературы, 1957 45. Пойа Д. Математическое открытие. Москва, "Наука", 1970 46. Поппер К. Логика и рост научного знания. Москва, 1983 47. Поппер К. Нищета
историцизма. Москва, "Прогресс" 1993 48. Пуанкаре А. О науке. Москва, "Наука", 1983 49. Родин А.В. Теорема //В печати 50. Рузавин Г.И. Гильбертовская программа и формалистическая философия математики.//Методологический анализ оснований математики. Москва, "Наука", 1988, с.108-168 51. Смирнова Е.Д. Логика и философия. Москва, "Росспэн", 1996 52. Спиноза Б. Этика. Москва-Ленинград, 1934, перевод А.К.Топоркова 53. Степанов Ю.С. Основы общего языкознания. Москва, "Просвещение", 1975 54. Степанов Ю.С. Альтернативный мир, Дискурс, Факт и принцип Причинности // Язык и наука конца 20 века. Москва 1995, с.35-73 55. Френкель А., Бар-Хиллел И. Основания теории множеств. Москва, "Мир", 1966. 56. Черняк В.С. Интуиция и математическая структура //Вестник Московского Университета, Серия 7, Философия. 1969. N3, с.44-52 57. Черняк В.С. Формализм Гильберта и кантова концепция математики//Методологические проблемы современной науки. Москва, 1970. с. 174-209 58. Черняк В.С. История. Логика. Наука. Москва, "Наука", 1986 59. Черняк В.С. Структуралистские концепции истории науки //Принципы историографии естествознания,
Москва, "Наука" 1993, с.296-314 60. Шапошников В.А. Математические понятия и образы в философском мышлении (на примере философии П.А.Флоренского и философских идей представителей Московской математической школы). Диссертация на соискание ученой степени кандидата философских наук. Москва, МГУ, 1996. 61. Шеллинг Ф.В.Й. Система трансцендентального идеализма // Шеллинг Ф.В.Й. Сочинения в двух томах, т.1, с.227-489 62. Шляхин Г.Г. Соотношение понятия и индивида в математическом знании// Методологический анализ математических теорий. Москва, 1987, с. 184-192 63. Bernays P. On Platonism in Mathematics// Beneceraff and Putman (eds.) Philosophy of Mathematics. Cambridge University Press, Cambridge, 1983 p. 258-271 64. Brittan G. Algebra and intuition // Kant's Philosophy of Mathematics. Kluwer Academic Publishers, Netherland, 1992, p.315-339. 65. Brouwer L.E.J. On the foundations of Mathematics //Collected Works. V.1. Philosophy and Foundations of Mathematics. Amsterdam - Oxford - New York, 1975, p.11-101 66. Brouwer L.E.J. Guidelines of Intuitionistic Mathematics// Ibid., p. 477-507 67. Brouwer L.E.J.
Historical Background, Principles and Methods of Intuitionism // Ibid., p.508-515 68. Cassirer E. The concept of Group and the Theory of Perception // Philosophy and phenomenological research. Vol. V, No.1, September, 1944. 69. Godel K. Russel's Mathematical Logic. // Beneceraff and Putman (eds.) Philosophy of Mathematics. Cambridge University Press, Cambridge, 1983 p.447-469 70. Godel K. What is Cantor's Continuum Problem // Beneceraff and Putman (eds.) Philosophy of Mathematics. Cambridge University Press, Cambridge, 1983 p.470-485 71. Goutner G. Transcendental synthesys as the foundation of mathematical discourse //VII Кантовские чтения. Калининград, 1995. 72. Friedman M. Kant and the Exact Sciences. Harward University Press, 1994 73. Hale B. Structuralism's Unpaid Epistemological Debts //Philosophia Mathematica (III). Vol. 4, N 2 p. 124-147 74. Hintikka J. Kant on the Mathematical Method // Monist 51(1967) 75. Jesseph D.M. Berkley's philosophy of mathematics. Chicago, University of Chicago press, 1993 76. Leppakoski M. The transcendental How. Almqvist & Wiksel International, Stockholm, 1993
77. Maddy P. Realism in Mathematics. Clarendon Press, Oxford, 1990 78. Proclus de Lycie. Les commentaires sur le premier livre des elementes d'Euclide. Desclee de Brouwer et Cie, Bruges, 1948 79. Parsons C. Kant's Philosophy of Arithmetic // Philosophy, Science and Method: Essays in Honor of Ernst Nagel, New York, 1983 80. Parsons C. Mathematics in Philosophy. N.Y. 1983 81. Resnik M.D. Structural Relativity // Philosophia Mathematica (III). Vol. 4, N 2 p. 81-99 82. Shapiro S. Space, Number and Structure: a Tale of Two Debates // Philosophia Mathematica (III). Vol. 4, N 2 p. 148-173 83. Young J.M. Construction, Schematism, and Imagination //Kant's Philosophy of Mathematics. Kluwer Academic Publishers, Netherland, 1992, p. 159-175

 
Книги из этой электронной библиотеки, лучше всего читать через программы-читалки: ICE Book Reader, Book Reader, BookZ Reader. Для андроида Alreader, CoolReader. Библиотека построена на некоммерческой основе (без рекламы), благодаря энтузиазму библиотекаря. В случае технических проблем обращаться к