Библиотека / Эзотерика / Бердышев Сергей : " Открытия И Изобретения О Которых Должен Знать Современный Человек " - читать онлайн

Сохранить .
Открытия и изобретения, о которых должен знать современный человек Сергей Николаевич Бердышев
        Перед вами своеобразная энциклопедия величайших в истории открытий и изобретений, существенно повлиявших на нашу жизнь и определивших облик современного мира, - от начала письма и математического счета до изобретения компьютера и технологии генной инженерии.
        Книга содержит 33 раздела, все сведения в ней строго классифицированы, так что пользуясь оглавлением, вы сможете легко найти нужную тему.
        С. Н. Бердышев
        Открытия и изобретения,
        о которых должен знать современный человек
        Предисловие
        Книга, которую читатель держит сейчас в руках, весьма необычна во многих отношениях. Это своеобразная занимательная энциклопедия величайших в истории открытий и изобретений, которые так или иначе, а в целом весьма существенно повлияли на нашу жизнь. «Все течет», - любили говорить древние. «Времена меняются», - так говорят люди сегодня. Причиной постоянных изменений и преобразований, наблюдаемых в мире, является рождение нового.
        На протяжении миллионов лет единственным творцом сущего была природа. Ее шедевры великолепны: она породила звезды, планеты, растения, животных, а главное, человека. Это суетное дитя природы быстро нарушило монопольное право своей «матери» и приступило к созданию собственных изобретений. Мы непрерывно что-то творим. И пожалуй, именно нашей кипучей деятельностью, переворачивающей зачастую самые основы мира, можно объяснить ускорение хода времени за последние 200 лет.
        Мир совершенно преобразился благодаря человеку и его неудержному стремлению изобретать нечто оригинальное. Неудивительно поэтому, что облик нынешних городов определяется потрясающими открытиями и изобретениями их неугомонных жителей. К сожалению, современный человек зачастую знает недостаточно о предметах, которые его окружают. Мы настолько привыкли к своим творениям, что не в силах уже представить, как когда-то то или иное изобретение решительно изменило образ жизни людей. И уж конечно, нам никак не удается вообразить, что многие из них обязаны своим появлением каким-либо научным открытиям.
        Чтобы читатель узнал о занимательной истории вещей в ее связи с наукой и прогрессом человечества, была написана эта книга. В этом сборнике содержится подробнейшая информация о наиболее значительных открытиях и изобретениях за всю историю существования человечества. Прочитав эту книгу, вы почерпнете из нее много удивительных фактов о вещах, науках, технической истории человечества, об изменениях, которые ожидают нас в будущем.
        Вы узнаете: кем и как совершались самые громкие открытия в истории; кто на основе этих открытий создавал в дальнейшем примечательные технические изобретения; какая польза человеку от этих изобретений в наше время. Например, все мы со школьной скамьи помним из курса физики, что есть закон Бойля - Мариотта и прочие газовые законы. Однако для большинства людей эти законы никак не связаны ни с чем полезным. А вот это неверно.
        В настоящей книге будет подробно рассказано о прорыве науки, обусловленном выведением газовых законов. Какими путями выдающиеся ученые прошлого пришли к ним? Как на основе этих законов изобрели дизельный двигатель? Какова история дизеля и его судьба сегодня? Чем еще полезны газовые законы? Об этом и многом другом поведает любознательному читателю настоящая книга. Объем не позволяет поместить здесь информацию о большом количестве открытий и изобретений. Но это не должно расстраивать читателя, поскольку самое важное и наиболее увлекательное не забыто.
        Избыток информации иногда вреден, как вреден он и в данном случае. Если бы здесь было представлено еще несколько тем, то получилась бы смесь фактов, никак не связанных между собой. Как бы то ни было, в книге рассказывается о гораздо большем количестве открытий и изобретений, чем обозначено в оглавлении. Просто те из них, что вынесены в подзаголовки, описаны наиболее полно, им уделено пристальное внимание, а об остальных сведения даются попутно, в связи с вышеизложенным материалом.
        Книга эта хороша в первую очередь тем, что все сведения в ней строго классифицированы. Они объединены на основе общих признаков таким образом, чтобы можно было без проблем, пользуясь оглавлением, найти нужную тему. Скажем, если вам интересно узнать о том, как был создан телефон, то достаточно заглянуть в статью, посвященную изобретению средств связи. На редкость полезное изобретение не было бы возможным без открытия электромагнитного поля. Рассказ об этом открытии помещен в следующей статье. Обе они объединены в раздел, затрагивающий вопросы электромагнетизма.
        Всего в книге содержится 33 раздела, включающих каждый по две статьи. В свою очередь, каждая такая статья представляет собой рассказ об открытиях или изобретениях. Разделы также сгруппированы. Они собраны в своеобразные главы, имеющие более обобщенную тематическую направленность, поскольку каждая отрасль знания может включать специфические, только ей свойственные открытия и изобретения.
        Материал в главах разбит как раз тематически - по специализированным отраслям, отдельным научным дисциплинам. Исключение из общего правила составляют лишь статьи первой главы, которая отличается от остальных тем, что посвящена рассказу о Древнем мире - доисторической эпохе и времени становления первых цивилизаций. Большая часть материала охватывает открытия и изобретения из области физики. И это неудивительно, поскольку изобретения, как правило, всегда имеют техническое воплощение, а техника, в свою очередь опирается на физические законы.
        И тем не менее, понятие техники весьма обширно, а потому она не может ограничиваться физикой. Кроме того, великие открытия, изменившие нашу жизнь, сделаны во многих отраслях науки - биологии, медицине, геологии, химии, математике. О каждой из перечисленных наук, а точнее, об их законах и сделанных на основе эти законов изобретениях также будет идти речь на страницах данной книги.
        Следует предупредить читателя о серьезном «недостатке» книги. Она лишает самоуверенности. Каждому известно, что первый пароход изобрел Фултон, опыты с магдебургскими полушариями проходили в Магдебурге, животные панически боятся огня, а человек не умеет летать к звездам. Нет, нет и еще раз нет! Все эти устоявшиеся воззрения и многие другие в корне ошибочны, доказательства чему приводятся на страницах этого издания. Более того, непременно указывается, откуда берет начало то или иное заблуждение. Просмотрев хотя бы первые две главы, всякий считающий себя исключительно эрудированным читатель лишится изрядной доли уверенности в собственных знаниях.
        Но и такой недостаток следует считать достоинством книги. Ведь она дает читателю предельно точную информацию, разоблачает нелепые мифы, просто и доступно объясняет причины разнообразных явлений и вскрывает внутреннюю логику событий в области науки и техники. В связи с изложенными в книге сведениями она может также оказаться очень полезной для школьников и преподавателей. И конечно, она будет интересна всем увлекающимся техникой, историческими курьезами, судьбой ярких личностей и законами природы.

1. Великие открытия и изобретения древнего мира
        Все окружающие нас вещи имеют свою историю и предысторию. Предыстория эта началась в далеком прошлом, на самых первых этапах развития человеческого общества. Тогда же формировались и первые государства. Число открытий и изобретений, совершенных в тот период человечеством, трудно вообразить. Одежда, орудия труда, обработка камня и металлов, использование огня… Именно в этот исторический период берет начало любая человеческая деятельность, которая являлась в те времена великим открытием. Ниже перечислены только наиболее существенные достижения древних людей, относящиеся к периоду первобытнообщинного и раннего рабовладельческого строя.
        Величайшие открытия древности
        Самым великим открытием человека было открытие им мира и становление первичного мировоззрения, имевшее место в доисторические времена. На стенах пещер первобытные люди около 30 тыс. лет назад сделали зарисовки, отображающие это гениальное открытие. Художник каменного века отразил представления своих современников о мироустройстве. Он уверенно разделил мир на небо, земную твердь и воду, указал четыре стороны света и показал животных обитателей каждой природной зоны. Однако существовали и другие поразительные открытия, каждое из которых по-своему повлияло на дальнейшую историю человечества. Некоторые из их числа берут свое начало в доисторической эпохе, но получили развитие только в ранних цивилизациях.
        Начало письма и математического счета
        В настоящее время затруднительно назвать точную дату изобретения людьми счета. Древнейшие наскальные рисунки показывают, что уже 30 -35 тыс. лет тому назад пещерные люди свободно считали самые разные объекты до 3 и 4. Около десяти с половиной тысяч лет назад первобытный человек определенно освоил более емкий и сложный математический счет. К этому времени относятся находки, представляющие собой записи учета пищевых продуктов. Пересчитывать разные вещи и продукты люди научились задолго до того, как освоили письмо.
        Трудности доисторического счета связаны в первую очередь с органолептическим восприятием наших предков. То есть они каждый предмет оценивали как нечто целое и законченное, в тесной взаимосвязи со своими ощущениями. При этом количество никогда не обособлялось от качества. Сходные представления существовали до недавнего времени у ряда племен, ведущих образ жизни первобытных охотников и собирателей. Это заставляло людей придумывать новые числительные для разнородных объектов и вносило путаницу в счет. Нельзя было количественно сравнить трех собак и трех оленей и т. д.
        И все-таки постепенно произошел отказ от этой системы счисления, потому что первобытные люди на раннем этапе развития добывающего хозяйства делили все между собой поровну. А для этого требовалось сопоставить количество продуктов и число потребителей. Важнейшим счетным инструментом являлась в ту пору рука, поскольку люди считали на пальцах. Кроме того, был широко распространен счет по другим частям тела. Он сохранился у многих народов - почти все родители учат считать своих детей на пальцах.
        Новогвинейские папуасы, ведущие традиционный образ жизни, по-прежнему практикуют более сложную систему счета на частях тела. Точно такая же система, видимо, в прошлом имелась у многих других народов. В счетной системе папуасов единице соответствует большой палец левой руки, 2 - указательный палец той же руки, 5 - мизинец, 6 - запястье, 7 - предплечье, 8 - локоть, 9 - плечо, 10 - надплечье, левая сторона шеи - 11, ухо - 12, глаз - 13, переносица - 14, нос - 15. После носа отсчет идет в обратном порядке, т. е. по правой половине тела. Правый глаз - 16 и т. д. Счет завершается на мизинце правой руки, который равен 27.
        На поздней стадии развития первобытнообщинного строя привычка считать по частям тела уступила место другой - помогать себе в счете камешками и палочками. Регулярное использование камешков привело к появлению абака - древнего счетного инструмента, предшественника современных бухгалтерских счетов. Известное каждому слово «калькулятор» восходит, между прочим, к латинскому «calcul» (камешек). Оно служило в прошлом для обозначения счетовода, пользующегося камешками.
        Почти все современное человечество считает десятками, т. е. в десятичной системе счисления. Она являлась одной из самых древних, поскольку происходила от привычки вычислять на пальцах рук. В дальнейшем эту систему узаконили египтяне. Древние люди, прежде чем окончательно перейти к ней, перебрали все мыслимые и немыслимые варианты. У разных племен американских индейцев, сохранивших традиционный счет, имеется около 400 вариантов разных систем счисления. Преобладают варианты десятичной (146 вариантов) и пятеричной (106) систем. Однако много форм и двоичной системы - более 80.
        Двоичная система была связана со становлением древнейшего мировоззрения и ранней дихотомией в сознании человека. Дихотомия означает деление на два. Такое мышление свойственно для всех народов глубокого прошлого, поскольку многие явления в мире подразумевают наличие пар: мужчина - женщина, земля - небо, добро - зло, день - ночь. Древние китайцы наделили дихотомию мистическими свойствами и создали на этой основе учение о балансе инь-ян. Традиция делить год примерно на 360 дней и 12 месяцев, окружность - на 360 градусов, час - на 60 минут и т. д. восходит к популярной на Древнем Востоке 60-ричной системе счисления. Первобытное счетоводство привело к появлению письменности.
        Древним людям приходилось использовать специальные значки для обозначения исчисляемых предметов. Это были значки-символы, выполненные стилизованно. То есть такие обозначения изображали предмет условно, а не художественно, в отличие от реалистичных и живописных рисунков на стенах пещер. Со временем такие символы превратились в иероглифы, положенные в основу иероглифического письма. Современные историки знают, где и когда произошло это великое событие. Впервые человек открыл для себя письменность свыше 5,5 тыс. лет назад в Междуречье, иначе, в Месопотамии. Изобретателями письма были шумеры - жители древнейшей восточной цивилизации Шумера, располагавшейся на территории нынешнего Кувейта и Ирака.
        Шумерская цивилизация в ту пору еще только зарождалась. Шумеры занимались земледелием, выращивали ячмень, чеснок и прочие культурные растения. Эти люди строили глиняные дома, лепили из глины амулеты, делали глиняную посуду и даже пили пиво (свой любимый напиток) через глиняные соломинки. Глина являлась основным материалом в жизни шумеров, именно по этой причине в Междуречье возникла легенда о сотворении человека богами из глины, заимствованная впоследствии многими другими религиями. Поэтому нет ничего удивительного в том, что становление письменности также многим обязано глине.
        Из этого удобного материала изготавливались первые значки-символы, применявшиеся для счета разнообразных объектов. Шумер был торговым государством, местные купцы вели дела с рядом соседних народов и государств. Чтобы точно знать количество единиц товара в партии, вести учет проданным или утерянным средствам, шумеры разработали особую счетоводческую систему. Купец, намереваясь продать, скажем, несколько верблюдов, пересчитывал животных и изготавливал для их обозначения значки-символы из глины.
        Археологи нашли эти значки. Они оказались маленькими плоскими кружочками. Такие кружочки лепили из сырой глины, на которую наносился иероглифический рисунок из палочек. Затем глина высушивалась. Рисунок был сильно стилизован и выполнялся палочками потому, что более сложные рисунки выполнять на сырой глине очень трудно. Поскольку купцы явно не умели рисовать, то выполнение рисунка палочками быстро прижилось в Междуречье. Готовые значки запечатывались в особый кувшин, предназначенный для хранения «бухгалтерской информации».
        По окончании путешествия, когда перегон верблюдов на место продажи заканчивался, купец разбивал сосуд и пересчитывал значки. Для разного рода товаров изготавливались различные значки. Древние жители Месопотамии, как и многие народы прошлого, не могли сопоставлять единицы разноименных объектов. Десять верблюдов нельзя было сравнить с десятью коровами или овцами. Потому для каждого вида товаров требовалась своя символика. Постепенно значки на глине превратились в оформленные иероглифическим письмом слова.
        Вавилоняне, народность, сменившая в Междуречье шумеров, развили искусство письма на глине и стали широко его применять. Они писали на плоских брусочках из сырой глины. Эти брусочки покрывались особым иероглифическим письмом, составленным из одних только черточек. То была т. н. клинопись - единственный вид письменности, пригодный для отображения на столь неудобном материале. Уже шумеры отказались от использования записей в исключительно счетоводческих, хозяйственных целях. Шумеры стали составлять самые разные тексты.
        Наиболее древние сочинения содержат имена вавилонских богов и царей, а также царские указы. В дальнейшем на глине стали писаться медицинские пособия, деловые и личные письма, государственные документы, различные книги. Любопытны письма, которые отправляли по почте друг другу жители Месопотамии. Глиняные дощечки запечатывались в конверты из глины. Чтобы конверт не прилипал к «бумаге», ее посыпали мелким песком и заворачивали в сырую глину, на которой ставили печать, после чего конверт высушивали.
        Хранилища глиняных книг, документов и пр. называются библиотеками. Одна из самых больших библиотек, обнаруженных археологами, названа по имени ее главного владельца и организатора библиотекой Ашшурбанипала. Ашшурбанипал был вавилонским правителем. Его книгохранилище содержит тысячи окаменевших табличек, похожих на кирпичи. Одна книга в среднем содержит до 40 -50 табличек. На табличках писали, кроме древних вавилонян и шумеров, еще и ассирийцы, эблаиты, халдеи и многие другие народы Древнего Востока.
        Письменность претерпевала столь же оригинальные превращения, как и математический счет. Чтобы выработать определенную систему письма, народы перепробовали самые разнообразные варианты. На смену рисованным иероглифам пришли упрощенные смысловые значки, обозначавшие слова или их части. Таковы китайские и японские иероглифы, которые пишутся сверху вниз в столбиках.
        Жители Месопотамии в течение 3 тыс. лет использовали клинопись. Египтяне писали справа налево и употребляли при это исключительно согласные. Финикийцы научились от египтян писать только согласные, а арабы переняли традицию писать справа налево. Греки писали стилем бустрофедон - четные строки записывались слева направо, а нечетные - наоборот. Само название стиля письма в переводе на русский означает «как бык пашет».
        Создание календаря
        Великий древнегреческий философ-идеалист Платон (IV в. до н. э.) вслед за своим учителем Сократом верил, что верховным божеством надлежит почитать Небо, поскольку оно дарует людям всяческие блага - дождь для растений, солнечное тепло для людей и животных и т. д. А главное, именно Небо всему научило человека, открыв ему тайны времени и математического счета. Если Платон и преувеличивал, то совсем немного.
        Наблюдения за небесным сводом и его светилами открыли перед людьми невероятный мир и привели к необходимости его активного изучения, требующего знания множества наук, в первую очередь точных. Потребность изучать небосвод, небесные знамения и феномены возникла еще у первобытного человека, поклонявшегося светилам и удивительным атмосферным явлениям. Постепенно, в ходе длительного наблюдения за созвездиями и планетами, люди открыли для себя некоторые закономерности космоса. Почти все значимые открытия, оставившие след в истории науки, касались на первых порах счета времени.
        Впервые представление о ходе времени человек получил благодаря солнцу. Положение дневного светила непостоянно, но меняется с течением суток. В результате происходит смена суток. Само слово «сутки» означает в переводе на современный русский язык означает «соединение». Оно имеет тот же корень, что и «стык», «стыковка», и подразумевает под собой соединение дня и ночи («День и ночь - сутки прочь»).
        Дальнейшие наблюдения показали, что природные явления сменяют друг друга по кругу. После холодов приходит пора тепла, а затем вновь наступают холода. Этот круговорот способствовал возникновению представлений о «круглом годе». Наблюдательность первобытного человека, зависевшего в целом от природы, позволила ему верно отметить, что количество тепла в течение года меняется в строгой зависимости от положения солнца на небосводе. Оно или низкое и слабо греющее, или высокое и жаркое. Количество тепла напрямую связано и с продолжительностью светового дня.
        Со временем люди научились различать солнечные противостояния и равноденствия. Это произошло также в доисторическую эпоху, о чем свидетельствуют кромлехи. Кромлехами называют мегалитические сооружения, т. е. культовые постройки, воздвигнутые первобытными людьми из огромных каменных блоков. Существует два типа мегалитов, помимо кромлехов, - менгиры и дольмены. Кромлехи имеют кольцевой вид, они представляют собой свободное пространство, ограниченное по окружности каменными столбами.
        Многочисленные кромлехи обнаружены в нашей стране на Алтае. Наиболее знаменит во всем мире английский кольцевой мегалит Стоунхендж (Стонхэндж), выстроенный свыше 4 тыс. лет назад. В эту пору на Востоке процветали первые государства, в частности Древний Египет, где уже начали строить пирамиды. Однако в Европе еще сохранялся первобытнообщинный строй.
        Стоунхендж велик, поперечник его окружности равняется 300 м. Каменные блоки массой порядка 40 т выставлены в виде архитрава, т. е. исполинские колонны имеют перекрытие сверху.
        Кромлех являлся настоящей солнечной обсерваторией. Конечно, современные астрономы правы, когда утверждают, что истинное назначение постройки еще предстоит понять, ведь для проводившихся в Стоунхендже наблюдений достаточно и менее помпезного сооружения. Но не будем забывать, что древние люди не обладали «прагматизмом» современных астрономов, преимущественно материалистов. Для доисторического человека наблюдения за космосом были частью культа поклонения Небу. Видимо, по большей части кромлех имел культовое предназначение, а потому и отличается столь внушительными размерами.
        Уделяя все большее внимание годичному движению солнца, человек заметил его смещение по эклиптике относительно зодиакальных созвездий. Это позволило поделить год на двенадцать месяцев. Протяженность каждого месяца в 30 дней была установлена не без помощи луны. Переменчивая луна также обращала на себя внимание доисторических людей сменой своих фаз. Полнолуние, новолуние, растущая и убывающая луна послужили отправной точкой для корректировки космического месяцеслова.
        В результате у разных народов возникли лунный и солнечный календари, нередко объединявшиеся и взаимно дополнявшие друг друга. Ранние космические календари имели колоссальное практическое значение, т. к. оповещали о приближении нового месяца или нового времени года, позволяли человеку подготовиться к сельскохозяйственным работам, охоте, священным празднествам и т. д. Календарь ввел упорядоченность в жизнь людей и приблизил доисторическое общество к цивилизации.
        Что касается календаря современного типа, то он зародился в античности. В основу его был положен древнеегипетский год, включавший в себя 360 дней. Преобразователями египетского календаря стали римляне. Диктатор Юлий Цезарь провел первую календарную реформу, ограничив продолжительность года 365 днями и каждый четвертый год объявив високосным (366 дней). Однако астрономы по ошибке назначили високосным каждый третий год. В дальнейшем император Октавиан Август повелел исправить ошибку и провел повторную реформу календаря. Имена властителей Рима были увековечены в знак их заслуг в названиях месяцев июль и август.
        Крупнейшие изобретения древности
        Если в наше время к изобретениям многие относятся с потребительским снисхождением, поскольку таковых появляется ежегодно огромное количество, то каждая гениальная догадка первобытного человека или гражданина древнейшего государства была в ту эпоху фантастическим прорывом человеческой мысли и средством покорения природы.
        Существует мнение, что культура помогла выжить первобытному человеку в экстремальных условиях окружающей среды. С этим мнением готовы спорить философы, которые справедливо указывают на не менее значимые труд и организацию коллектива в жизни наших предков. И все-таки именно материальная культура помогла людям побороть слепые и жестокие силы природы. Возникновение материальной культуры оказалось возможным благодаря изобретательству первобытного человека.
        Изобретение каменного топора и колеса
        Колесо и каменный топор считаются одними из самых ярких творений человеческого гения на заре его развития. Авторы этих замечательных изобретений неизвестны науке, хотя нет оснований сомневаться в том, что это были неординарные, творческие люди. По какой-то непонятной причине каменный топор считается главным орудием труда древнего человека. В представлении современного человека, далекого от археологии, этот инструмент является непременным спутником наших предков.
        Это не совсем верно, потому что топор появился не сразу, а лишь на определенном этапе развития человека. В числе самых первых орудий труда каменный топор не состоит, поскольку является не таким уж простым инструментом. Доисторическим изобретателям потребовалось сначала освоить технику изготовления более примитивных орудий из камня, прежде чем приступить к попыткам создать топор.
        Архаичные наши предки, жившие в Африке 2,1 млн лет тому назад, не обладали ни достаточным объемом мозга, ни развитием кистей рук, чтобы создать нечто подобное. Однако эти древнейшие представители рода Homo (человек) уже были знакомы с камнем и умели его применять для своих нужд. Они, первыми начавшие изготовлять орудия труда, получили в науке название Homo habilis (человек умелый). Его предками были полулюди австралопитеки, которых относят к семейству человечьих, но не считают настоящими людьми. Хабилис, в отличие от австралопитеков, являлся самым настоящим человеком.
        Его трудовые навыки были примитивны в сравнении со способностями человека более позднего типа. Хабилис пользовался лишь простейшими галечными орудиями - скребками. Эти скребки, видимо, применялись им при разделке пищи. Сомнительно, чтобы хабилисы были ловкими и способными охотниками. Они жили собирательством, причем вполне могли использовать для этих целей и скребки.
        Архантропы, пришедшие на смену человеку умелому около 1,5 млн лет назад, свободно пользовались скребками, сверлами и более сложным самодельным инструментом. В числе наиболее прогрессивных изобретений архантропов следует назвать сечки, которые обычно именуют чопперами, и рубила. Последние были весьма разнообразны, имели множество форм, отличавшихся одна от другой по технике изготовления, размерам, захвату, особенностям режущего края и т. п.
        Развитая культура каменных орудий характерна для неандертальцев, представлявших более позднюю и продвинутую стадию развития человека. Неандертальцы (палеоантропы) являются ближайшими родственниками человека современного типа и его прямыми предками. Эти коренастые люди пользовались самыми разнообразными каменными орудиями. Базис материальной культуры палеоантропов составляли остроконечники и скребла. Помимо них широко применялись резцы и костяные орудия. Неандертальцы охотились, умели строить жилища в виде шалашей и архаичных землянок, обживали пещеры, сравнительно неплохо пользовались огнем.
        Вероятно, уже архантроп и палеоантроп, освоившие технику сверления, умели производить каменные топоры. Археологические раскопки показали наличие грубых подобий этих инструментов в арсенале древнейших людей. Но первые достоверные находки настоящего каменного топора относятся ко времени кроманьонцев, ранних людей вида Homo sapiens. Они умели сверлить камень, затачивать его, изготовлять под будущий топор деревянное топорище.
        Впрочем, насаживать лопасть топора на топорище требовалось не всегда. Иные первобытные мастера выбирали другой путь. Они зубом животного, например бобра, проделывали в толстом топорище отверстие для лопасти. Затем вставляли лопасть в топорище. Но прежде чем закрепить камень тем или иным образом, требовалось придать лопасти форму, пригодную для рубки деревьев и прочих хозяйственных нужд. Доисторический мастер подыскивал на речном берегу обкатанный волнами валун с углублением. В этот желобок помещалась лопасть топора, закреплялась там и полировалась для наибольшей остроты. Когда камень и топорище били полностью обработаны, камень насаживался на топорище и закреплялся сухожилиями. Некоторые книги распространяют заблуждение, будто бы топор служил охотничьим приспособлением и использовался наряду с копьем. На самом деле каменные топоры никогда не применялись в качестве оружия: это было орудие труда. Память веков не сохранила имени изобретателя каменного топора.
        То же самое случилось с автором не менее примечательного изобретения - колеса. Выражение «изобретать колесо» означает попытку создать заново нечто, прекрасно известное и давно используемое. Действительно, колесо было изобретено давным-давно и с тех пор не требует никаких принципиально значимых усовершенствований. Круг не может быть преобразован и улучшен, он прекрасен и совершенен сам по себе.
        Пожалуй, как раз совершенство круга и движения по кругу натолкнуло древнего человека на мысль об изобретении столь полезной вещи. Сегодня уже нельзя сказать с полной уверенностью, как додумались наши предки до идеи создания колеса. Она настолько проста и самоочевидна, что необычайно трудно установить источник вдохновения, питавший древнего «инженера» и подвигший его на создание этой наиболее важной детали любого транспортного средства.
        Гениальным изобретателем универсального устройства не был первобытный человек, его появление относится ко времени становления первых цивилизаций и связано с народами Ближнего Востока. Некогда считалось, что колесо создали 37 столетий назад гиксосы или что эти ближневосточные племена позаимствовали его у соседних народов. Сегодня известно, что это далеко не так, однако в любом случае воинственные гиксосы первыми стали широко применять данное приспособление.
        Оно было им чрезвычайно необходимо, поскольку использовалось при постройке боевых колесниц. В действительности изобретение колеса примерно совпадает по времени с одомашниванием лошади и сооружением боевой колесницы. Известно, что гиксосы запрягали в упряжки полностью прирученных лошадей. До этого времени лошадь, вероятно, была дикой. Колеса гиксосы готовили тщательно, используя в производстве специальные сорта дерева, нередко привозимые издалека.
        Однако значительно раньше, задолго до времени одомашнивания лошадей, на Востоке применяли в качестве тягловой силы верблюдов и иногда ослов. Этих животных впрягали в повозки, снабженные колесами. Возраст древнейших из этих повозок равняется шести тысячелетиям, а следовательно, таков приблизительный возраст самых ранних колес. Итак, колесу 6 тыс. лет.
        Самое первое колесо в Европе было изготовлено из кленовых и ясеневых досок 4,5 тыс. лет назад на территории современной Швейцарии. Оно было обнаружено в 1986 г. при раскопках на берегу Невшательского озера. Другое древнее европейское колесо значительно уступает описанной находке и относится уже к бронзовому веку. Оно и само изготовлено из бронзы порядка 2700 лет назад. Колесо это, найденное в торфяниках Франции, являлось частью погребальной колесницы.
        Примерно в 1500 г. до н. э., т. е. 35 веков тому назад, колесницы получили широкое распространение во всех древневосточных государствах, в первую очередь в странах Месопотамии и Египте. Предприимчивые критяне, жители средиземноморского острова Крит, в это же время наладили массовое производство колесниц, предназначавшихся для экспортной продажи, если выражаться современным языком.
        Самим критянам колесницы были не особенно необходимы, потому что на их острове преобладали гористые местности, тогда как в мастерских обнаружено до 500 колесниц. Остается предположить, что жители Крита продавали свои изделия в Египет и Азию. Колесо становится с этого времени не просто полезным и удобным, но чрезвычайно необходимым. Дальнейшее развитие человечества немыслимо без применения колесного транспорта.
        Освоение огня
        Замечательный писатель P. Киплинг в своей бессмертной «Книге джунглей» поведал красивую, но - увы! - совершенно неправдоподобную сказку о страхе диких животных перед Красным Цветком. Огонь действительно повергает многих зверей в панику, но это неудивительно. В природе не бывает маленьких костров, зато часто случаются обширные пожары, которые легко напугают и человека. Наблюдения за животными показали, что они охотно возвращаются на пожарища, чтобы погреться у еще не потухших до конца языков пламени или чтобы отыскать среди углей погибших в огне птиц и ящериц.
        Зоологам удавалось наблюдать, как обезьяны собираются вокруг все еще пылающих древесных остатков, совсем как люди вокруг костров. Предположительно, первобытный человек точно так же подходил к огню за теплом на раннем этапе своего исторического развития. Однако Гомо сапиенс стал единственным живым существом, которое научилось пользоваться огнем.
        Порядка 4/5 всей истории люди не умели целенаправленно пользоваться огнем, хотя догадались, что его можно применять для личных нужд, порядка 500 -800 тыс. лет назад. Лишь 400 тыс. лет назад синантропы впервые, насколько позволяют судить находки, догадались подбирать угли на пожарище и долгое время хранить их в каменных очагах внутри пещер. Огонь раздувался из тлеющих углей, а после поддерживался хворостом и сухой листвой. Постепенно человек стал сознательно искать места пожарищ и ударов молнии, чтобы подбирать там раскаленные уголья. Каждое горящее дерево было для первобытного человека настоящим сокровищем, т. к. давало много огня.
        Добывать же огонь самостоятельно, путем трения, человек в ту пору не умел. Даже жившие 80 -100 тыс. лет назад неандертальцы, прямые предшественники современного человека, не знали техники добывания огня. Оттого они не смогли продвинуться далеко на север в эпоху оледенения и под влиянием суровых климатических условий быстро вытеснены кроманьонцами, находившимися на более высокой стадии развития.
        Кроманьонцы определенно знали, как добывать огонь, и могли получить его с помощью кремня или дощечек в любое время. Но при этом предпочитали поддерживать постоянный огонь в каменных очагах. Оттого эти люди селились у самой кромки древнего ледника. Широкое применение огня позволило первобытным земледельцам расчищать обширные пространства леса под пашни. Поселяне выжигали участок леса, перемешивали золу с почвой как удобрение и засеивали очищенное пространство дикими злаками и прочими прообразами современных культурных растений.
        Наиболее значимым результатом применения огня стала выплавка металлов. Сначала первобытный человек освоил технику работы с медью, которую легче всего обрабатывать. Применение меди положило конец каменному веку и предшествовало векам металлов. Оттого этот сравнительно короткий период человеческой истории получил название меднокаменного века. Затем последовало освоение бронзы, наступил бронзовый век (4 -5 тыс. лет назад).
        Многие народы на протяжении меднокаменного и бронзового веков применяли еще и золото, однако обработка этого металла не была уже столь революционной. Гораздо более важным событием стало применение железа. Железный век наступил 2,5 -3 тыс. лет назад, в период, когда древние кузнецы научились «подкармливать» огонь кислородом, применяя мехи для раздувания жара. Получение высоких температур дало нашим предкам возможность применять для своих нужд наиболее доступный, ковкий и удобный металл, каковым является железо.

2. Самые выдающиеся достижения классической механики
        В наши дни классическую механику связывают с именем великого английского физика XVII в. И. Ньютона, и даже называют ее «ньютоновой» механикой. Однако многие законы и положения классической механики были выдвинуты задолго до рождения выдающегося ученого. Ньютон же своей деятельностью и открытиями подытожил достижения своих предшественников. Любопытно, что и в последующее время развитие механики не превратилось в слепое комментирование сочинений Ньютона. Напротив, наука значительно расширила свои границы и обогатилась новыми открытиями. О наиболее примечательных «неньютоновских» открытиях и изобретениях механики, совершенных за всю ее историю, рассказано в настоящей главы.
        Поиски точки опоры
        Когда великий сиракузский геометр и изобретатель Архимед открыл закон рычага, он восторженно воскликнул: «Дайте мне точку опоры, и я переверну мир». Великое открытие сегодня кажется весьма скромным, однако оно явилось первой точно выполненной и научно обоснованной формулировкой знаменитого «золотого правила» механики. Благодаря открытию закона рычага физика продвинулась значительно вперед.

«Золотое правило» механики
        Автор замечательной сказки «Алиса в стране чудес» Л. Кэрролл не был писателем в полном смысле этого слова, а занимался тем, что преподавал математику в Оксфорде. Однажды он предложил своим студентам задачу, которая получила впоследствии название «обезьяньей». Почти все студенты дали самые разные, однако, неправильные ответы на нее. По условию задачи, через колесо блока перекинута веревка. На одной ее части висит обезьяна, другая часть уравновешена гирей. Требуется определить, куда сдвинется груз (и сдвинется ли вообще), если обезьяна поползет по веревке вверх.
        Правильным ответом будет утверждение, что гиря тоже начнет подниматься. Ведь веревка под лапами обезьяны сдвигается вниз, а следовательно, груз увлекается наверх. А на первый взгляд может показаться, будто гиря опускается вниз. Конечно, нетрудно сделать так, чтобы обезьяна поднималась вверх, а гиря при этом опускалась. Для этого самой обезьяне вообще не требуется двигаться. Вполне достаточно утяжелить гирю и нарушить тем самым равновесие на блоке. Тяжелая гиря потянет вниз, а обезьяна станет подниматься. Блок является т. н. простым механизмом (простой машиной). Конечно, для физики это крайне простое, если не сказать примитивное, устройство. Но в действительности он не так уж и прост. Существуют разновидности блоков - подвижный и неподвижный, а также системы блоков, полиспаст, наклонная плоскость, винт, клин, рычаг.
        Важнейшим свойством этих простых механизмов является их способность восстанавливать и поддерживать равновесие тел за счет приложенных сил. Поскольку равновесие означает баланс сил, то назначение простых машин заключается в изменении направления или величины затрачиваемых сил при сохранении постоянной работы.
        Чтобы познакомиться с возможностями простых машин, рассмотрим две нехитрые системы неподвижных блоков. Представим себе, что человек пытается с помощью системы из двух блоков - неподвижного и подвесного - поддержать себя и подвесную платформу, т. е. уравновесить собственный вес и вес платформы посредством мускульной силы. При этом подвесной блок, на который воздействует мускулатурой человек, связан с канатом, перекинутым через неподвижный блок. Возможно ли это?
        В принципе такое явление вполне допустимо. В системе взаимодействуют несколько сил - вес человека, вес платформы, а также силы натяжения отрезков каната. Представим, что система уже находится в равновесии, и выясним условия такого состояния. Отрезки каната, перекинутого через подвесной блок, натянуты с одинаковой силой, поскольку являются продолжением одного каната. То же самое можно сказать и про концы каната, перекинутого через неподвижный блок.
        С каждого блока спускается по отрезку от каждого из канатов, подсоединенному к платформе. На эти два отрезка действуют ее вес и вес человека, которые мы буквенно обозначим P и P’. Так как в системе установлен баланс сил, то сумма весов P и P’ уравновешена силами натяжения. Примем за F силу натяжения, приходящуюся на скрепленный с платформой отрезок, относящийся к подвесному блоку. Тогда эта сила равняется мускульной силе человека. А сила натяжения в закрепленном отрезке неподвижного блока будет численно равна сумме двух этих сил, т. е. 2F. Таким образом, результирующая сила натяжения равна 3F.
        Сила человека была утроена системой блоков! Если система пребывает в равновесии, то суммы противонаправленных сил количественно равны. Сложив вес человека и платформы, мы получим величину, равную учетверенной силе человека. Запишем это в виде уравнения:
        P + P’ = 3F,
        где P’ - вес человека, а P - вес человека, а P - вес платформы. Физически крепкий мужчина способен удержать вес, равный собственному:
        F = P.
        Если справедливо предположить, что все усилия нашего воображаемого человека на платформе идут на удержание собственного веса, то получается, что ее вес равняется удвоенной силе человека:
        P = 2F.
        Итак, чтобы человек удержал платформу в равновесии посредством описанной системы блоков, вес платформы не должен превышать мускульную силу человека более чем в 2 раза. Если же вес платформы много меньше мускульной силы человека или, по крайней мере, равен ей, значит, человек может применить неполную силу для поддержания равновесия. Как видно, блок не так уж прост.
        Обращает на себя внимание вертикальное натяжение канатов, которое максимально. Натянуть же с помощью двух неподвижных блоков веревку в горизонтальном положении столь успешно нельзя, т. к. она все равно будет немного провисать. А причиной тому является баланс сил в системе блоков. Провисание вызывает сила тяжести, направленная вертикально. Поэтому никакая приложенная к горизонтали сила на веревку не подействует и силу тяжести не скомпенсирует.
        Как видно, описанные выше системы меняют направление сил или меняют их величины. Принципы действия простых машин легко объяснить на наиболее типичных устройствах - неподвижном и подвижном блоках. У неподвижного блока силы приложены к двум точкам, которые лежат на равных расстояниях от центра, служащего точкой опоры. Данные силы всегда количественно равны друг другу, т. к. взаимно уравновешиваются. Однако направление их действия неодинаково. То есть неподвижный блок меняет направление силы, в этом заключается выигрыш.
        Теперь рассмотрим подвижный блок. У него точка опоры лежит на краю колеса, на середину его приходится нагрузка, а на другой край - противодействующая сила. Все три точки - опоры и приложения сил - лежат на одной прямой, совпадающей с диаметральной хордой окружности колеса блока. Нетрудно убедиться, что неподвижный блок меняет величину приложенной силы. Расстояние от точки опоры до точки приложения сил неодинаково, и мускульная сила приложена к точке, что находится на расстоянии 2r.
        Силы сравниваются при помощи геометрии. Для этой цели восстанавливаются векторы сил, и по ним строятся фигуры. Здесь геометрических построений приводиться не будет, интересующиеся этим могут выполнить необходимые расчеты самостоятельно. Сейчас же приводится окончательный результат таких сравнений. Силы соотносятся между собой так же, как соотносятся расстояния точек их приложения от точки опоры. Если поделить величину противодействующей нагрузки на величину мускульной силы, то получится тот же результат, что при делении 2r на r. Иными словами, мускульная сила уравновешивает на подвижном блоке вдвое превышающую ее нагрузку. Получается выигрыш в силе.
        Следует ли считать эти выигрыши, которые дают простые машины, выигрышами в работе? Вовсе нет, и вот почему. Работа прямо пропорциональна силе, приложенной к телу, и расстоянию, которое тело преодолело под действием данной силы. Выигрыш в работе означает увеличение работы при постоянной силе или неизменном пути. Посмотрим, реально ли это. Если записать соотношение данных трех величин в виде физической формулы, то получится выражение
        A = F ? S,
        где A обозначает работу, F - силу, а s - путь (расстояние).
        Любое увеличение силы означает сокращение пути. Любое сокращение пути приводит к увеличению силы. То есть реален выигрыш в силе или в расстоянии. Но количество работы остается неизменным. Выполнить большую работу за счет неизменных силы и расстояния нельзя. Чтобы работа увеличилась, одну из величин в правой части формулы или сразу обе также необходимо увеличить. Но если мы увеличиваем силу, то не должны делать этого за счет расстояния. А если увеличиваем расстояние, то не за счет сокращения силы.
        Иными словами, для выполнения большей работы требуется затратить больше энергии, а выдумывать «экономичный» механизм бесполезно. В этом и состоит «золотое правило» механики, которое утверждает: когда выигрывается в силе, то проигрывается в перемещении, и наоборот. Это правило лежит в основе закона сохранения энергии, который доказывает, что невозможно получить выигрыш в работе без дополнительных затрат энергии. При постоянных затратах X нужно либо уменьшить расстояние, тогда получится применить наибольшую силу, либо уменьшить силу, тогда тело можно будет переместить на большее расстояние.
        Изобретение рычага
        Неизвестно, с какими бы трудностями столкнулись физики в своих попытках утвердить «золотое правило» механики в его современном виде, если бы задолго до того это правило не было сформулировано в применении к частному случаю. Свыше 2200 лет назад наука открыла закон рычага - простой машины, наглядно иллюстрирующей справедливость «золотого правила». Парадоксально, но рычаг изобрели задолго до того, как был открыт физический закон, объясняющий принцип действия этого устройства.
        Принцип работы рычага настолько прост, что это нехитрое устройство впервые стали применять, видимо, еще доисторические люди. Они использовали палки для перемещения больших камней, особенно при воздвижении своих культовых мегалитических сооружений - менгиров, дольменов, кромлехов. В дальнейшем рычажные устройства, сконструированные по гораздо более сложной схеме, стали применяться строителями древнейших городов.
        Поскольку самый первый город Иерихон был заложен свыше 10 тыс. лет назад, то можно утверждать, что начиная с этой даты применение рычагов становится все более частым. Регулярно рычажные механизмы применялись в Древнем Египте, где имело место широкомасштабное планомерное строительство разнообразных архитектурных комплексов, объектов хозяйственного назначения и т. п. Каждый в первую очередь представляет себе царские гробницы - пирамиды. Если соблюдать точность, то знаменитые египетские пирамиды представляют собой колоссальные надгробия из каменных блоков.
        Сама гробница является крупным помещением, уходящим глубоко под землю и заканчивающимся комнатой-усыпальницей, в которой помещался саркофаг с мумией усопшего владыки. Первоначально надгробиями для подземных гробниц фараонов служили огромные плоские мастабы. Лишь фараон Джосер около 4700 лет назад ввел традицию увеличивать мастабы ввысь и превращать их в пирамидальные сооружения. Во время воздвижения пирамид широко применялись рычаги, которые являлись самым необходимым строительным приспособлением, поскольку лишь с помощью подобных устройств было возможно поднимать массивные каменные глыбы на большую высоту.
        Затем машины, действие которых основано на принципе рычага, стали использоваться в строительстве повсеместно. Естественно, особое значение они получили в Древней Элладе, т. к. греки уважали архитектуру. Эта наука в их представлении была связана с одной из «идеальных» наук - геометрией. Конструирование механических устройств не было, однако, столь почетным делом. По этой причине рычагом пользовались, не пытаясь объяснить его свойств.
        Некоторые древнегреческие мыслители предпринимали попытки разгадать тайны рычага, но все эти начинания оказались тщетны по той причине, что древние подходили к проблеме с предвзятым суждением о свойствах этого простого устройства. Вскоре рычаг был объявлен магическим инструментом, потому что его работа основывалась на полумистических свойствах круга. Дело в том, что концы плеч рычага описывают в пространстве во время своего движения дуги окружностей. А круг и окружность почитались в Древнем мире как священные и волшебные фигуры, ведь по кругу двигались небесные светила.
        Круг был «идеален» во всех отношениях, а потому ссылкой на него легко можно было объяснить все самое непонятное в природе и жизни людей. Закон рычага предстояло открыть великому древнегреческому геометру III в. до н. э. Архимеду, жившему в городе Сиракузы на Сицилии. Архимед первым приподнял завесу тайны над магическим кругом, обнаружив число «пи», и поэтому относился к геометрии без излишней предвзятости и идеализации.
        Кроме того, Архимед обладал чрезвычайно широким кругозором и занимался практически всеми вопросами существовавших в ту эпоху направлений геометрической науки. Архимед работал над правилами построения фигур, развивал теорию геометрии, конструировал осадные и строительные машины, изучал центры равновесия (центры тяжести), рассчитывал планетарии, т. е. глобусы звездного неба. Единственной отраслью современной ему геометрии и механики, в которой ученый себя никак не проявил, было изобретение механических игрушек.
        Таковы предпосылки, благодаря которым Архимед первым описал сущность работы рычажного устройства и на этом основании сформулировал закон рычага. Рычагом называется любой жесткий стержень для приподнимания и перемещения тяжестей. Он имеет точку опоры или ось скольжения, позволяющую ему осуществлять передвижку предметов. Участки стержня, к которым приложены противодействующие силы, называются плечами рычага. Длина каждого плеча равна протяженности отрезка стержня между точкой опоры и точкой приложения силы.
        Одной из сил является вес тяжелого тела, которое необходимо переместить. Вторая сила, приложенная к другому плечу, - мускульная. Эту силу развивает человек, работающий с рычагом. Естественно, такая схема сильно упрощена, поскольку рычаги бывают самыми разными, и силы на них действуют также различные. Работа равняется, как и в предыдущих случаях, произведению расстояния на силу. Тело смещается благодаря рычагу в вертикальном направлении.
        Однако это расстояние, как несложно убедиться, зависит от длины плеча рычага. Это следует из равенства треугольников, а треугольниками в данном случае являются воображаемые фигуры, отражающие перемещение точек приложения сил и точки опоры. Следовательно, чем ближе к точке опоры вес тяжелого тела и чем дальше приложение мускульной силы, тем больший выигрыш получает человек. Впрочем, понятие выигрыша относительно, т. к. выигрыша в работе рычаг не дает. В этом он схож с любым простым механизмом.
        В рассмотренном случае, когда к длинному плечу приложена мускульная сила, происходит выигрыш в силе: малой силой можно уравновесить большую. Но есть рычаг другого рода, который дает выигрыш в расстоянии. В этом случае мускульная сила приложена к короткому плечу. Перемещать слишком тяжелые предметы нельзя, зато свободно передвигаемые таким рычагом тела могут смещаться на большие расстояния. «Золотое правило» механики действует и здесь. Если есть выигрыш в силе, то будет проигрыш в расстоянии, и наоборот.
        Многие люди ошибочно полагают, что тела одинакового веса всегда уравновешиваются рычагом. Отнюдь, равновесие между одинаковыми телами наступает лишь в одном случае - когда плечи рычага равны по длине. В остальных случаях равенства не наступает. Это неудивительно. Соотношение сил равняется соотношению длины плеч рычага. То есть при равных силах, когда соотношение равно 1, для установления баланса необходимо, чтобы соотношение длин плеч количественно равнялось той же величине. Единицу в пропорции можно получить при единственном условии: когда длины плеч одинаковы.
        В связи с этим любопытна задача о «пустом» рычаге. К нему не приложены никакие внешние силы, кроме тяготения, которое действует на сами плечи простой машины. Плечи равны по длине и изготовлены из одного материала, следовательно, рычаг находится в равновесном состоянии. Если согнуть одно из плеч, нарушится ли равновесие? Оказывается, да! Поразительно, но перетянет длинное плечо.
        Это произойдет по следующей причине. В согнутом плече сместится центр тяжести, он приблизится к точке опоры. В результате само плечо окажется короче, потому что длина плеча представляет собой расстояние между точкой опоры и точкой приложения силы (последняя в нашем случае есть центр тяжести, к которому приложен вес плеча). В другом плече центр тяжести находится по-прежнему далеко от точки опоры. Вес обоих плеч не изменился, значит, смещение центра тяжести приведет к нарушению баланса.
        Итак, Архимед, обрадованный своим открытием, горделиво утверждал: «Дайте мне точку опоры, и я переверну мир». Если верить римскому литератору и хроникеру Плутарху, сиракузский изобретатель высказался столь категорично в беседе со своим родственником, царем города Сиракузы Гиероном. Отчетливо понимая, что не существует в природе веса, который невозможно сместить посредством подходящего рычага, Архимед заверял царя, что будь у него (Архимеда) в распоряжении другая земля, он бы поднял нашу.
        Впоследствии эту крылатую фразу не раз обыгрывали, но, как правило, всегда неудачно, любители ярких выражений. Однако нас сейчас интересует, был ли прав Архимед. Беспредельны ли возможности рычага? Конечно, его возможности напрямую связаны с материалом стержня, прочностью точки опоры и протяженностью длинного плеча.
        Предположим, будто бы у нас имеется подходящий рычаг и точка опоры. Теоретически, если все условия соблюдены, нет ничего более простого, чем сдвинуть планету с земной массой. Земля весит 6 на 10^21^ т. Следовательно, рычаг должен иметь длинное плечо всего в 10^23^ раз больше короткого. Одна неприятность ожидает последователей Архимеда: неизбежный проигрыш в расстоянии. Чтобы переместить планету с орбиты на толщину атомного ядра, потребуется, очевидно, преодолеть свыше 100 000 км в мировом пространстве, что равно 0,26 расстояния между Землей и Луной.
        Если же нам захочется сдвинуть нашу планету на расстояние, равное поперечнику мельчайшей песчинки (10^-6^ м), то длинное плечо рычага опишет во Вселенной еще большую дугу - порядка 10^14^ км, или 10,6 св. года. Это приближенно равняется расстоянию между Землей и карликовой звездой Росс 154 (10,3 св. года). Бедный Архимед, воспользуйся он современными ракетами, преодолел бы это чудовищное расстояние только много более чем за 1,1 млн лет! Поэтому правота дерзкого утверждения Архимеда относительна.
        Воздух - загадочное «ничто»
        На протяжении столетий люди ошибочно думали, будто бы воздух - это ничто. Лишь античные философы признали воздух веществом и нарекли его одним из четырех первоэлементов, слагающих природу. Но и такое признание дало немного для физики, поскольку не раскрывало истинной природы воздуха. Он по-прежнему считался легчайшим и невесомым, как бы несуществующим, хотя губившие корабли мореходов ураганы настойчиво доказывали обратное. Истинным переворотом в физике и человеческом сознании вообще стало открытие воздушного давления.
        Открыто давление воздуха
        Первым ученым-физиком, всерьез обратившим внимание на материальность воздуха и его влияние на окружающие тела, был великий итальянский механик и астроном Г. Галилей. В 1638 г. он проводил свои исторические опыты с шарами, которые бросал вниз с наклонной Пизанской башни. При этом Галилей установил, что свободному падению тел препятствует воздух. В пустом пространстве тела разных масс и форм падали бы одновременно, с одинаковым ускорением.
        Спустя некоторое время после этих опытов, в 1643 г., было открыто атмосферное давление. Его обнаружил другой итальянский физик - Э. Торричелли, устроивший специальный опыт. Он использовал открытый сосуд с ртутью и полую стеклянную трубку, запаянную с одного конца. Длина трубки равнялась 1 м. Ее также заливали ртутью. Торричелли закрыл отверстие трубки, перевернул ее и в таком виде вертикально опустил в сосуд с ртутью. Затем он открыл отверстие трубки, находящееся на ее конце, погруженном в сосуд. Однако ртуть из трубки не вылилась.
        Уровень жидкого металла лишь немного понизился, опустившись до 760 мм. Высота столба ртути составляла, т. о., 760 мм, а выше находилось пустое пространство. Если следовать физике Аристотеля Стагирита, служившей в то время фундаментом науки, то получается, что именно пустота препятствует дальнейшему убыванию ртути. «Природа боится пустоты», - учил Аристотель. Однако добросовестного экспериментатора Торричелли эти устаревшие, ложные учения не устраивали. Если природа боится пустоты, то откуда вообще взялось пустое пространство в трубке? И почему оно столь странно себя ведет?
        Пустота, названная впоследствии торричеллиевой, действительно вела себя в высшей степени странно. Торричелли проделал множество опытов, подтвердивших, что уровень ртути в трубке меняется, но при этом остается неизменным относительно поверхности ртути в открытом сосуде. В своих опытах физик наклонял трубку и наблюдал, как ртутный столбик ползет вверх. Чем острее был угол наклона, тем выше по трубке полз металл и тем меньше оставалось на ее конце пустого пространства. Но если замерить высоту уровня ртути не относительно стенок трубки, а относительно поверхности жидкого металла в сосуде, то высота ртутного столба останется неизменной и будет равна 760 мм. Ясно, что происходило это вовсе не под «особым влиянием» пустоты. К слову, никакой абсолютной пустоты в пространстве над ртутью в торричеллиевой трубке не было. Там находились пары ртути. Как бы то ни было, их давление столь ничтожно, что не будет ошибкой пренебречь им.
        Ученый совершенно верно связал странности поведения металла с атмосферным давлением. На поверхность ртути в открытом сосуде давит воздушный столб. Поскольку воздух не проникает в область торричеллиевой пустоты внутри трубки, то давление внутри жидкого металла в этой трубке зависит лишь от давления, приходящегося на поверхность ртути в сосуде. А это означает, что ртуть в трубке Торричелли находится под давлением, равным атмосферному. При определенной величине давления воздуха высота ртутного столба остается постоянной. Длина столба при наклоне увеличивается, а вот высота, отсчитываемая по вертикали, не меняется до тех пор, пока не изменится давление воздуха.
        Торричелли высмеивал отсталое представление о легких и тяжелых телах, основанное на ложном учении Аристотеля. Давление атмосферы порождает, как и давление жидкостей, выталкивающую силу. Именно Торричелли первым обратил на это внимание. Ученый показал, каковы были бы рассуждения мифических персонажей, если бы они действительно существовали и развивали собственную физику. Морские нимфы сочли бы древесину, тяжелую в воздушном океане, легкой в своей родной среде. Жители ртутного моря почитали бы за легкие все тела, кроме золота. А вот живущие в огне саламандры каждое физическое тело, включая и воздух, нашли бы тяжелым.
        В существовании выталкивающей силы может убедиться всякий, кто наблюдал полет воздушного шара или дирижабля. Эти тела поднимаются вверх именно потому, что их выталкивает архимедова сила, порожденная атмосферным давлением. Силу выталкивания следовало бы назвать торричеллиевой, но Архимед открыл ее раньше для жидкостей. Дирижабли заполняются водородом или более безопасным гелием. Воздушные шары наполняются горячим воздухом, который «легче» прохладного. Точнее, плотность горячего воздуха низка, оттого его вес меньше.
        Приведенное объяснение полета воздушных шаров и аэростатов несколько упрощенно. В действительности на шар действуют многочисленные внешние и внутренние силы. Если влияющая на деревянную пробку и любое твердое тело выталкивающая сила порождена разностью давлений на нижнюю и верхнюю части такого тела, то в случае с давлением на оболочку шара (аэростата) сила выталкивания порождается разностью давлений газа внутри и снаружи оболочки.
        Есть и более простой способ наблюдать, как воздух выталкивает тела. Для этого достаточно вооружиться стеклянным колпаком, из под которого можно откачать насосом воздух, а также рычажными весами, набором аптекарских гирь и елочным шаром. Шар, полый внутри, следует залить в месте отверстия воском, добившись герметичности.
        Затем нужно положить шар на чашу весов и уравновесить его гирями. После этого весы помещаются под колпак, откуда начинает выкачиваться воздух. По мере того как давление воздуха под колпаком будет падать, шар перевесит гири. Его истинный вес оказался больше потому, что на заполненный воздухом шар действовала выталкивающая сила, уменьшающая вес. Как только сила Архимеда значительно уменьшилась, шар приобрел почти истинный вес.
        Завершая разговор об открытиях Торричелли, нужно отметить, что благодаря этому ученому была найдена единица измерения давления под названием миллиметр ртутного столба (мм рт. ст.), которая долгое время с успехом использовалась в силу своей наглядности.
        Ныне она не применяется в физике, где была вытеснена паскалем и баром. Если до конца соблюдать точность, то вместо бара используется его производная - миллибар (мбар), представляющий 1/1000 бара. Один миллибар приближенно равен нормальному атмосферному давлению, а именно 750 мм рт. ст.
        Паскаль (Па) принят Международной системой единиц и равен 0,01 мбара. Сейчас миллиметры ртутного столба применяются только метеорологами.
        Сегодня известны физические причины, вызывающие давление воздушного столба. Всякое давление газа есть результат ударов его частиц (молекул) об окружающие тела. Газовые частицы непрерывно движутся на большой скорости, оттого их суммарные удары о какую-то поверхность приводят к тому же эффекту, как если бы на эту поверхность давило какое-то твердое тело. Главным условием давления является ограниченность объема. Если газ ничем не ограничен, то он разлетается в мировом пространстве, хаотически рассеивается и теряет возможность оказывать давление.
        Иначе обстоит дело на космических кораблях, которые представляют собой замкнутое пространство. Не так давно, незадолго до начала космической эры, некоторые ученые спорили, будет ли воздух на борту космического корабля иметь давление. Ответ на этот вопрос очевиден сам по себе и подтвержден в настоящее время многократными космическими полетами. Замкнутое пространство поддерживает давление воздуха на космическом корабле. Молекулы постоянно ударяются о стенки и не разлетаются.
        Давление планетной атмосферы весьма своеобразно, поскольку воздушная оболочка имеет лишь одну границу - нижнюю, т. е. поверхность планеты (Земли). Верхней границы для земного воздуха не существует, поскольку за пределами атмосферы начинается космическое пространство. В силу этой причины наша планета через 3 млрд лет утратит свою газовую оболочку. Атмосфера полностью улетучится в космос. Сейчас же она удерживается за счет сил гравитации.
        Покинуть гравитационное поле Земли можно лишь на скорости 7,9 км/с, а большинство молекул не способны развить такую скорость. Они чересчур медлительны, а потому не могут улететь в космос, но парят над земной поверхностью, образуя воздушный слой. Естественно, парить постоянно под действием притяжения медленные молекулы не могут. И они периодически падают на земную поверхность и находящиеся на ней тела. Поскольку число частиц воздуха очень велико и достигает 27 на 10^24^ частиц на 1 м^3^, то на нас непрестанно обрушивается град молекул. Этот град создает вес воздуха, а попутно и атмосферное давление на земную поверхность.
        Таким образом, давление воздуха по своей природе тесно связано с весом. Но разница между этими силами есть. Давление воздуха направлено равномерно во все стороны, потому что он, будучи газом, стремится разлететься во всех направлениях. Вот почему давление действует на тела на дне воздушного океана со всех сторон.
        А вот вес по своему действию сонаправлен с силой земного притяжения. Причина столь тесной взаимосвязи между двумя разными силами коренится в том, что гравитация создает ограничение для разлета газовых молекул атмосферы, заменяя собой отсутствующую стенку «сосуда», в который заключен воздух. А если есть стенка, пусть и ненастоящая, то получается замкнутое пространство, в котором воздух обладает давлением.
        Величина атмосферного давления, приходящегося на тело человека, составляет 200 кН (килоньютон). Получается, что воздушный столб давит на нас с силой 20 т! Обычно в некоторых учебниках или популярных книгах, особенно устаревших, подчеркивается, что человек «адаптировался» к столь чудовищному давлению и не замечает его. Давления этого мы действительно не замечаем, но совсем по другим причинам. Адаптироваться к жизни под прессом, увы, невозможно.
        Атмосферное давление не причиняет нам ни малейшего вреда лишь потому, что само себя компенсирует, а также компенсируется внутренним давлением организма. Вспомним, что площадь человеческого тела равняется 2 м^2^. Стоит разбить 20 т на эту солидную площадь, как получится сравнительно скромная величина - 10 г/мм^2^. Полученное нами значение является физической постоянной - нормальным атмосферным давлением. Оно, как видно, невелико.
        Нельзя забывать и о том, что воздух давит на человека со всех сторон, а не только сверху. Оттого спинной хребет не претерпевает никаких существенных нагрузок. Нижняя и верхняя половины тела придавливаются друг к другу с одинаковой силой, равной 5 кН, т. е. 500 кг. Но и опять внутренние органы не расплющиваются. Они спокойно переносят фантастические нагрузки, поскольку площадь соприкосновения половин тела насчитывает 1000 см^2^, а потому давление остается прежним по значению - 10 г/мм^2^.
        Кроме того, внутреннее давление человеческого тела компенсирует наружное сдавливание. Впрочем, происходит так не всегда. Например, в суставах давление в сравнении с атмосферным ничтожно. В результате головки костей прочно держатся в суставных впадинах: они туда вдавливаются силой атмосферы. Хитрое устройство, изобретенное природой, защищает нас от вывихов. Удержать суставы столь крепко сцепленными и при этом подвижными каким-либо другим способом не удалось бы.
        Страшно представить, что случилось бы с человеком, имей мы другое анатомическое строение. Каждому из нас доводилось брать со стола различные предметы - книги, листы бумаги, деловые папки и т. д. Эти предметы плотно прилегают к крышке стола, поэтому любой скажет, что между поверхностью стола и лежащей на ней книгой, например, ничего нет. Оба объекта тесно соприкасаются. Физик обязательно оспорит положение. Он знает, что поверхности тел неровные, а потому между столом и книгой всегда есть прослойка воздуха.
        Полностью устранить эту прослойку невозможно, т. к. предельно выровнять поверхность стола или книги не получится. Но это даже к лучшему. На книгу обычного формата действует давление воздуха с силой около 28 кг. Разумеется, мы этого давления не замечаем, т. к. оно уравновешивается противодавлением тонкого воздушного слоя, находящегося под книгой и отделяющего ее от стола. Если хотя бы значительно сократить его толщину, то человеку придется в буквальном смысле слова отрывать книгу от стола, прилагая физическую силу, как если бы речь шла о поднятии груза в 20 -25 кг. Естественно, книгу поднять получится, но она будет сильно изорвана.
        Известен и более наглядный пример. В старых учебниках по физике, как школьных, так и университетских, по традиции непременно помещали классический рисунок магдебургского опыта. Шестнадцать лошадей пытаются разнять два полушария, надежно скрепленных давлением воздуха. Автор эксперимента - просвещенный бургомистр О. фон Герике, знаменитый изобретатель воздушного насоса. Этот человек, прозванный современниками «германским Галилеем», одним из первых поверил в существование воздушного давления и реально оценил фантастическую мощь последнего.
        Всего бургомистр провел множество самых разнообразных опытов, как тогда говорили, «над безвоздушным пространством». Но эксперимент с двумя упряжками лошадей вошел в историю, поскольку стал настоящим событием в науке. Он проводился 8 мая 1654 г. в чрезвычайно торжественной обстановке. Политическая ситуация в Германии и Европе в целом в ту пору была крайне нестабильной, однако на удивительное зрелище съехались многие князья и сам император.
        Не все знают, где конкретно проходил этот эксперимент. Нередко доводится встречать ошибочное заключение, будто бы событие имело место в городе Магдебурге. Герике был бургомистром Регенсбурга, в истории которого магдебургские опыты стали самым знаменательным событием. К слову, не так давно, в середине 1980-х гг., местные власти, обеспокоенные тем, что городок почти никто не посещает, решили периодически устраивать для привлечения гостей эксперимент с полушариями и лошадьми. В те времена опыты также носили характер рекламы, но на сей раз это была реклама научного открытия, которое могло пройти незамеченным. Медные полушария названы магдебургскими в честь города, в котором были изготовлены.
        Сам фон Герике описал свои эксперименты в книге «Так называемые новые магдебургские опыты над безвоздушным пространством…», вышедшей в Амстердаме в 1672 г. Опыт с лошадьми изложен в главе XXIII. Герике сообщает о том, как по его заказу изготовили медные полушария диаметром 36,9 см, к которым были прикреплены 4 кольца для продевания канатов от упряжки. Одно из полушарий было снабжено краном для откачки воздуха.
        Фон Герике пишет следующее: «В кран вставлена была трубка воздушного насоса, и был удален воздух внутри шара. Тогда обнаружилось, с какою силою оба полушария придавливались друг к другу через кожаное кольцо. Давление наружного воздуха прижимало их так крепко, что 16 лошадей рывком совсем не могли их разнять…». В строгом смысле слова, к полушариям была приложена сила только 8 лошадей, а противоположная упряжка создавала противодействие. С тем же успехом можно было бы закрепить полушария на стене каменного дома и заставить восьмерку лошадей тянуть их в направлении от стены.
        Эти восемь лошадей развивают тягу, равную 20 т. Она оказалась недостаточной, чтобы разъединить полушария, столь сильно сдавливал их воздух. «Но стоило поворотом крана открыть свободный доступ воздуху, и полушария легко было разнять руками», - сообщает далее фон Герике. Нелишне будет напомнить, что железнодорожные вагоны имеют массу в пределах 20 -22 т. То есть давление воздуха приближенно равнялось весу вагона.
        От лошадей требовалась задача, равная перемещению вагона, не поставленного на рельсы. И неудивительно, поскольку величина давления, приходившегося на каждое полушарие, насчитывала 1 т! Кто-то может возразить, что лошадь способна везти тонну. Это верное замечание, вот только лошадь везет ее на телеге. Магдебургские полушария являлись телегой без колес. От этого масса «воздушного груза» составила свыше 20 т. Чтобы разорвать полушария, потребовалось бы употребить силу 26 лошадей вместо 16.
        Строго говоря, полного вакуума внутри полушарий никогда не было. Получить глубокий вакуум и сегодня технически нереально, в XVII в. же это была неосуществимая задача. Поэтому сжимало полушария не атмосферное давление, а разница давлений - атмосферного и сверхнизкого внутреннего. Следует оговориться и касательно другого момента. Использовать 26 лошадей для разрыва полушарий вовсе не обязательно. Роль второй упряжки опять-таки вполне может сыграть прочная каменная стена.
        Это прекрасно понимал, видимо, и автор эксперимента фон Герике. Достаточно сказать, что в последующих Магдебургеких опытах мы уже не встречаем никаких двойных упряжек. Герике разрывал полушария грузами и прочими способами. Например, он подвешивал полушария на крюк и прикреплял к нижнему платформу, на которую накладывал грузы.
        Видоизмененный вариант полушарий Герике представляют собой присоски, которыми обязательно пользуются грабители и шпионы экстра-класса в кинофильмах. Посредством таких присосок человек якобы обретает возможность передвигаться по стенам. Создатели кинопродукции никого не обманывают. Присоски действительно способны удержать человека, поскольку из-под них выкачивается воздух. Резина плотно прилегает к поверхности стены, а ничтожно низкое давление скудной воздушной прослойки не может скомпенсировать давления воздуха.
        Площадь одной такой присоски равняется 70 000 мм^2^. Это означает, что устройство способно выдержать вес до 700 тыс. г, или 700 кг! Поскольку глубокого вакуума создать такая присоска не может, ее сила значительно меньше. И тем не менее очевидно, что человек в состоянии удержаться всего на одной присоске. Ловкие режиссеры показывают гораздо более захватывающие сцены с использованием присосок. Например, когда человек срывается со стены или с крыши скоростного поезда, и от смерти его спасает только присоска. Корректны ли эти сцены с точки зрения физика? Вполне! Падение со стены в изображаемых сценах занимает по времени около 3 с. За это время человек под действием ускорения утяжеляется до 235 кг. Именно такая нагрузка приходится на присоску. Даже если падение будет длиться 5 -6 с, присоска все равно исправно выполнит свою задачу.
        Падение со скоростного поезда длится примерно 1 с (на самом деле сцена занимает несколько меньше времени). Вес человека увеличивается за счет сил инерции, сообщающих ему ускорение 28 м/с^2^. Нетрудно подсчитать, что среднего роста и телосложения мужчина в такой момент будет оказывать на присоску нагрузку в 2240 Н (ньютонов), что соответствует в нормальных условиях весу 224 кг. Это приближенно равно 3-кратной перегрузке, которую легко выдерживает тренированный человек. Присоска опять-таки справляется с поставленной перед ней задачей.
        Между прочим, именно присоски больше всего убеждают в том, что давление воздуха направлено равномерно во все стороны. Ведь с их помощью киногерои двигаются по вертикальным поверхностям и потолкам, следовательно, воздух одинаково давит и вбок, и даже вверх.
        В заключение этого разговора следует рассказать о вакууме. Аристотель верил, что пустоты не существует, и до известной степени был прав. Неужели Торричелли ошибался и все его старания опровергнуть точку зрения античного философа были пустой тратой времени и принесли вред науке? Отнюдь. Так рассуждать нельзя. В свое время Аристотель спорил с Платоном, Галилей спорил с Аристотелем, Пуанкаре объявил, что Земля не вращается, и тем самым опроверг Галилея.
        И тем не менее каждый из этих мыслителей и ученых был по-своему прав, поскольку изучал законы мира с новой позиции. Судить этот вечный спор нельзя, поскольку в нем нет неправой стороны. Галилей не поддерживал Платона, когда опроверг физику Аристотеля. Пуанкаре не восстанавливал авторитет Стагирита, когда оспаривал великого итальянца. Так склонны думать лишь люди с плоским мышлением, тщетно пытающиеся «навести порядок в науке».
        Пустота есть, и одновременно ее нет. В мире нет абсолютной пустоты, однако есть та пустота, против которой восстал Аристотель. Вакуум представляет собой особое состояние материи, обладающее минимальной энергией. Оно почти свободно от частиц вещества, но насыщено физическими полями и различными волнами. Из энергии полей и волн способны возникать виртуальные частицы, которые при подходящих условиях «материализуются» - становятся реальными. Вакуум не терпит пустоты и сам порождает вещество.
        Физический вакуум, как видно, не является абсолютной пустотой. В еще меньшей степени ей является космический вакуум. В мировом пространстве рассеяно колоссальное количество вещества - межзвездного газа и пыли. Плотность этого газа ничтожна, однако на каждый 1 см^3^ самого глубокого вакуума в среднем приходится 1 атом вещества. Если бы человек обладал способностью двигаться с околосветовой скоростью, то на собственном опыте убедился бы в насыщенности космоса газо-пылевым веществом.
        Если воздух на Земле оказывает сопротивление летящему снаряду, то в межзвездном пространстве сильно разреженный газ будет противодействовать полету космонавтов. Астрономы не раз наблюдали объекты, которые движутся со скоростью, близкой к световой. Это газовые струи, извергаемые некоторыми галактиками. На первый взгляд, газ в вакууме не должен встречать никакого сопротивления. Поскольку же скорость струй чудовищно велика, то для них межзвездная среда уплотняется и превращается в серьезную преграду. Поэтому астрономы наблюдают неизбежное торможение галактических выбросов.
        Но скорость планет, обращающихся вокруг звезд, невероятно низка. Скорость движения самих звезд также ничтожна в сравнении со световой. Наиболее быстрая планета Солнечной системы Меркурий движется вокруг Солнца со скоростью 0,00016с, где с - скорость света (300 000 км/с). Скорость самого Солнца равна 0,0008с, т. е. всего лишь в 5 раз больше. Сопротивление заполняющего космический вакуум газа для планет и звезд исчезающе мало. Эти тела движутся в пустоте.
        Барометр и прочие изобретения
        Первый барометр был создан, как ни странно, 2000 лет тому назад великим механиком античности Героном Александрийским. Изобретенное греком устройство правильнее называть бароскопом, однако использовалось оно в качестве термоскопа. То есть прибором измеряли не давление воздуха, но его температуру. Термоскоп Герона описан ниже, в разделе, посвященном температуре и изобретению термометров.
        Настоящий бароскоп, использовавшийся по прямому назначению, создал Э. Торричелли. Торричеллиева трубка, заполненная ртутью, как раз и представляет собой этот бароскоп. Устройство является предшественником нынешних ртутных барометров. Показания трубки выражались в единицах, понятных любому современному человеку, а это большая редкость для науки и техники.
        Обычно история отметает старые меры и приборы, заменяя их более удобными и улучшенными аналогами. Достаточно напомнить, что сегодня не применяются древнейшие мерные инструменты и единицы для измерения длины, хотя эта физическая величина наиболее проста. Атмосферному давлению повезло больше. Его сразу стали измерять посредством прибора, который не претерпел со временем принципиальных изменений. Единица измерения также сохранилась и почти повсеместно используется, лишь в ряде наук она вытеснена другими.
        Сегодня созданы водные, ртутные и многие другие типы барометров. Барометры для измерения атмосферного давления, имеющиеся почти в каждом доме, обычно не являются ртутными. Они принадлежат к семейству анероидов. Барометр-анероид внешне напоминает часы: он круглый и снабжен стрелками. Одна стрелка установочная, она выставляется владельцем барометра и показывает изначальное значение давления. Вторая стрелка рабочая, она отклоняется при изменении давления.
        По разнице между положением установочной и рабочей стрелок можно судить о том, как меняется давление (возрастает, падает) и насколько. При этом установочная стрелка выставляется по рабочей, т. е. указывает на ту же отметку, что и рабочая стрелка. На следующий день владелец барометра считывает показания прибора. Для этого необходимо посмотреть, куда отклонилась рабочая стрелка относительно своего первоначального положения, отмеченного установочной.
        Если стрелка ушла в сторону больших значений, то это говорит о том, что давление растет. О падении давления свидетельствует движение стрелки в сторону меньших значений. Резкие скачки предвещают существенные изменения погоды. Впрочем, плавное изменение положения стрелки также опасно, если она далеко отклонилась от области нормальных значений. Нормальным атмосферным давлением принято считать значение 760 мм рт. ст., а также соседние отметки - 750 -765 мм рт. ст.
        Падение давления ведет к ухудшению погоды: облачности, дождям, ветру. Критическое падение давления отмечено на барометре надписью «Буря». Это связано с тем, что в местность с пониженным давлением затягивается воздух из соседних областей, что вызывает ветер, а тот, в свою очередь, нередко приносит облака, тучи, осадки и т. д. Скорость ветра напрямую зависит от разницы давлений между участками атмосферы над рассматриваемыми местностями. Большие подвижные области низкого давления называются циклонами. Тропические циклоны (тайфуны и ураганы) опасны очень сильным ветром и грозами, которые сопровождают их.
        Обширные области устойчивого высокого давления носят названия антициклонов. При высоком давлении небо ясное, облачность минимальна, а осадков не наблюдается. Летом повышение давления означает увеличение жары и сухости, отсюда и надпись «Сушь» на барометре. Зимой «Сушь» приносит крепкие морозы. Критическое повышение давления отмечено на шкале анероида надписью «В. сушь», т. е. великая сушь.
        Анероид лишен ртутного или водяного столба, зато обладает гофрированной коробочкой, стенки которой чрезвычайно чувствительны к перепадам давления. В зависимости от величины давления коробочка сжимается, как бы сдавливается или, напротив, распрямляется и выгибается. По поверхности такой коробочки скользит стержень механического устройства, приводящего в движение стрелку барометра. Стержень меняет свое положение всякий раз, как только коробочка деформируется. Соответственно, изменяется и положение стрелки.
        Использовать выталкивающую силу воздуха человек научился лишь в конце XVIII столетия, когда французские изобретатели братья Монгольфье построили первый в истории воздушный шар. Их шар, как и последующие сконструированные ими модели, наполнялся горячим воздухом. Первый полет на монгольфьере, как окрестили новое транспортное средство, состоялся в 1783 г., т. е. более 300 лет назад. Подъемная сила самых крупных шаров-монгольфьеров была невелика и составляла 27 % от веса воздуха под оболочкой.
        На своем первом детище братья-изобретатели сделали провидческую надпись: «Так поднимаются к звездам». Конечно, на воздушном шаре не долететь до звезд. Но дорога в космос прокладывается человеческим разумом, творческим и созидающим. Наука и техника приведут людей к покорению воздушного океана и небесных далей - вот во что верили Монгольфье.
        На рубеже XVIII -XIX вв. родилась идея заполнять монгольфьеры водородом, который в 14 раз легче воздуха, поэтому имеет большую подъемную силу. С такой идеей выступил французский физик Ж. Шарль, один из первооткрывателей газового закона, носящего его имя. Летательные устройства на водороде широко применялись вплоть до начала прошлого столетия. К сожалению, этот газ слишком горюч, может легко вспыхнуть. В смеси с воздухом он взрывоопасен. Это приводило к многочисленным катастрофам, связанным зачастую с большими жертвами.
        Поэтому более поздние аэростаты предложено было наполнять гелием, который удалось открыть на Земле в конце XIX в. (открытый в середине XIX в. гелий был известен лишь на Солнце). Впрочем, в течение длительного времени гелий не был универсальным заправочным газом, поскольку получать его промышленным путем не умели вплоть до начала Первой Мировой войны. К слову, во время этой войны столь же важную роль, как и самолеты, играли управляемые аэростаты, называвшиеся дирижаблями. Строить дирижабли начали в первые годы XX столетия.
        Первыми открыли легкий способ получения гелия немцы, которые во время Первой Мировой войны ошеломили противников атакой своих цеппелинов, не взрывающихся под прямым обстрелом. Англичане догадались, что германские цеппелины - дирижабли с оболочкой на металлическом каркасе - заправлены не горючим водородом, а нейтральным гелием. Британская разведка вскоре открыла секрет получения гелия, и газ стали добывать во всем мире в промышленных масштабах.
        Однако к тому времени необходимость в дирижаблях отпала. Они слишком медлительны, плохо берут высоту и сложны в управлении. Кроме того, гелий имеет ряд недостатков перед опасным водородом, которым пользуются и по сей день для заправки стратостатов и других зондов, изучающих метеорологические условия в высших слоях атмосферы. Нужно отметить, что изобретение сослужило людям хорошую службу.
        В частности, первые перелеты через Атлантику выполнялись именно на дирижаблях в 1918 г. Между прочим, по ошибке принято считать, будто первый трансатлантический перелет совершил Ч. Линдберг в 1927 г. На самом деле Линдберг был 67 по очереди человеком, пересекшим воздушным путем Атлантический океан. Он был первым одиночкой, совершившим беспосадочный перелет через океан.
        Как бы то ни было, искусство воздухоплавания на монгольфьерах и дирижаблях вновь возрождается в конце прошедшего века. Причем цели новоявленных «аэронавтов» более чем серьезны. Сейчас весь мир обеспокоен катастрофическим сокращением площади экваториальных лесов. Чтобы спасти множество видов, населяющих девственные леса, называемые еще дождевыми, требуется прежде всего досконально изучить экологию и биологию этих видов.
        Значительное число обитателей дождевого леса селится в кронах деревьев. Исследователи оценили биологическое богатство этой среды. Кроны деревьев дождевого леса резко отличаются от остальных лесных ярусов и настолько своеобразны, что могут сравниться с такими средами, как океанический шельф, коралловые рифы, лесная подстилка и почва.
        Удивительный, бурлящий жизнью мир совершенно не изучен, поскольку изучать его затруднительно по причине 60-ти метровой высоты деревьев. Выход из создавшегося положения был найден, когда ботаник Франсис Алле предложил для исследования необычной среды применять воздушные шары. С самолета кроны изучить невозможно, поскольку биологу требуется зависать над деревьями. Вертолет создает много шума, порождает сильные воздушные потоки, чем распугивает животных.
        Тихоходные монгольфьеры способны легко скользить над древесными кронами и надолго останавливаться в заданном положении. Исследовательские воздушные шары оснащены подвесными каркасными платформами (надувными), на которых по прибытии на место размещаются ученые со своей аппаратурой. Шар позволяет спускать платформу на переплетение древесных ветвей и закреплять ее там, после чего шар сворачивается. Использование надувных платформ в изучении древесных крон можно сравнить с изобретением акваланга, который открыл для человека красоты океанических глубин.
        В обозримом будущем следует ожидать появления нового назначения дирижабля. Он прошел путь от обыкновенного транспорта, военной машины до исследовательского воздушного судна. Скоро дирижабли станут круизными судами. Малая скорость не является в данном случае серьезным недостатком, напротив, может расцениваться как достоинство. Океанические круизные лайнеры тихоходны и огромны. Такими же могут быть и дирижабли с цеппелинами. Более того, летучая гостиница может быть вечной.
        Уже давно ученые планировали оснастить самолеты ядерными реакторами. К несчастью, проект провалился. Другого и быть не могло, поскольку масса такого самолета должна была бы достигать как минимум 700 т, из которых основная часть приходилась бы на защиту пилотов, экипажа и пассажиров от радиации. Дирижабль же не боится большого веса. Ведь этому устройству требуется мощность двигателей лишь 0,02 л.с. на 1 кг полетного веса. Атомный литиевый реактор в состоянии обеспечить данную мощность. В конце 1960-х гг. появились первые разработки такого рода в США и ФРГ.
        Затем интерес к ядерному дирижаблю на время затих, поскольку техническое осуществление проекта было слишком трудным. Сегодня реально построить и не такие гиганты, какие были спроектированы в 60-е гг. XX в. Рост туризма и сервиса развлечений достиг ныне небывалого размаха, а потому к идее ядерного дирижабля еще не раз вернутся. Точно так же воздушные шары стали ныне неотъемлемой частью бизнеса развлечений. Проекты атомного великана впечатляют.
        Подъемная сила исполина, разработанного в США (т. н. бостонский проект), достигает 380 т. Общая мощность двигателей в 6000 л.с. позволяет дирижаблю развивать скорость до 150 км/ч. Трехпалубное воздушное судно рассчитано на одновременную перевозку 400 пассажиров.
        Это немного в сравнении с океанскими лайнерами, однако не нужно думать, будто люди будут тесниться на борту дирижабля. В проекте предполагается, что гостиница будет иметь все удобства. В ее плане имеется роскошный ресторан, танцевальный зал, видеосалон и т. д. Некоторые из постояльцев смогут взять с собой в путешествие личную машину: на борту предусмотрен гараж для перевозки 100 автомобилей.
        Рано ставить точку и в военной истории дирижабля. Американцы предполагают использовать крупные дирижабли с мягкой оболочкой для патрулирования морских границ. Подобная техника поступила в управление береговой охраны США сравнительно недавно. Первым успешным дирижаблем стал самый большой на то время из имеющих мягкую оболочку «Сентинел-1000». Гигант обладает высокой маневренностью и может находиться в полете около суток без дозаправки. Исполин был построен и испытан в 1991 г.
        Власть автоматики
        Современная механика, основывающаяся на законах Ньютона и Галилея, сильно отличается от ранней классической механики. Во все времена эта наука служила потребностям производства. Сегодня ее значение в данной роли только возросло. Но поскольку запросы промышленности стали совершенно иными, то и механика претерпела серьезные изменения. Ее теоретическая часть дополнилась удивительными открытиями, а прикладная часть, как и следовало ожидать, обогатилась многочисленными изобретениями. Это связано главным образом с возникновением особой, «производственной» механики, которая распалась на автоматику, мехатронику, робототехнику и прочие направления.
        Открытие алгоритмирования
        Народная мудрость предостерегает нас: «Не говори „гоп“, пока не перепрыгнешь!». В этой нехитрой рекомендации заключен глубокий смысл, если подходить к ней с научных позиций. Выполнение любой работы требует от человека четкой последовательности действий. Сегодня в развитых странах повсеместно происходит активный процесс автоматизации труда, т. е. замены человека на тяжелых и вредных производствах машинами. Несложно догадаться, что данное незыблемое правило распространяется и на автоматы, а потому играет исключительно важную роль в развитии промышленности.
        Описание последовательности действий мы называем указаниями или руководством. Наука использует название алгоритма. Прыгай, а потом говори «гоп» - типичный пример алгоритма, поскольку это руководство содержит описание оптимальной последовательности действий. Выполняя действия в указанной последовательности, можно добиться желаемого результата.
        Само слово «алгоритм» имеет арабское происхождение. Это латинизированная форма от имени великого среднеазиатского математика прошлого аль-Хорезми. Он первым рассмотрел поиск решения задачи в качестве системы операций, осуществляемых в полном соответствии с правилами математического вычисления. Впоследствии составление приемов решения задач получило название алгоритмирования, а раздел математики, занимающийся данным направлением, был назван теорией алгоритмов.
        Математика лежит в основе всех точных и технических наук, а также тесно сотрудничает с науками естественными. Невозможно назвать такую отрасль знания, которая не опиралась бы на математику. Оказывается, даже гармонию искусства можно «поверить алгеброй». Наверное, оттого столь величественны и прекрасны египетские пирамиды, что их творили любящие свое ремесло геометры. Для современного человека наиболее значимым достижением этой науки явилось начало изучения информации математическими методами.
        Связь алгоритмов с трудовыми действиями, последовательностью чего-либо и с математическими величинами была установлена не сразу. Сначала математика взялась за проблему установления количественных законов доказательств и опровержений. Прежде чем изобрести научное алгоритмирование, требовалось заложить основы математической логики. Ее создателем выступил английский математик Дж. Буль, отчего долгое время, почти до 1950-х гг., данную дисциплину именовали «булевой алгеброй». Буль создал свою алгебру в 1854 г., указав на возможность применять математические законы для решения практических задач.
        В начале XX в. трудами многих экономистов были сформулированы базовые положения менеджмента как науки управления производством. Особым направлением менеджмента стало возникшее в 1900 -1910 гг. учение Ф. Гилбрета о последовательности рабочих операций. Оно позволило разбить деятельность рабочих на отдельные психомоторные элементы - т. н. терблиги (от обратного прочтения имени первооткрывателя).
        Нахождение оптимальной последовательности терблигов способствовало повышению эффективности выполнения заданий. Таким образом, Гилбрет фактически нашел способ алгоритмизировать труд. Потребность в управлении возрастала, причем само понятие управления непрерывно расширялось. Это не просто контроль за рабочими, но исследование самых разных процессов (технологических, социальных, психологических, экономических и т. д.) и умелое направление этих процессов в нужное русло.
        В 1940-х гг. под влиянием растущего интереса к проблемам менеджмента американский математик Н. Винер создает науку об общих законах управления процессами и системами - кибернетику. Становление и дальнейшее развитие кибернетики было связано с развитием вычислительных машин, которые в середине 1940-х гг. как раз претерпевали бурную эволюцию: на смену электромеханическим счетным устройствам приходили электронные машины (ЭВМ). Эти устройства были построены таким образом, что выполняли анализ информации по программе, являвшейся алгоритмом, записанным на машинном языке.
        Прогресс кибернетической науки, ее успехи тесно связаны с дальнейшим развитием информатики и вычислительной техники. По иронии судьбы оказалось, что управление разнообразными процессами возможно полноценно, всесторонне изучать лишь посредством компьютеров - устройств, работа которых всецело подчиняется кибернетическим алгоритмам. Кибернетика по своему содержанию и совокупности методов напоминает Уроборос - змею, заглатывающую свой хвост, поскольку эта наука движется по замкнутому кругу.
        Исследования управленческих задач упираются в использование электронно-вычислительных машин. Их программирование сводится к необходимости изучать начала теории управления. Таким образом, развитие теории предполагает параллельное развитие технологий. Объединение теоретических основ кибернетики и созданной благодаря им вычислительной техники облегчает дальнейшие исследования управления процессами и анализ систем.
        Может возникнуть вопрос, как алгоритмирование связано с механикой. Оказывается, самым непосредственным образом. Дело в том, что кибернетика была призвана усовершенствовать работу механических, электромеханических, тепловых и прочих машин. Высокая производительность этих устройств, их возможности, оптимальный режим работы и многое другое определяется, естественно, кибернетикой. В наше время такие параметры рассчитываются исключительно на ЭВМ.
        Однако расчет проводится с учетом данных классической физики, кибернетика опирается на формулы механики.
        Динамика находит траекторию движения деталей и величины приложенных сил, статика находит сопротивление, податливость, пластичность и хрупкость материалов и т. д. Полученные формулы приобретают благодаря кибернетике вид универсального алгоритма для станков и прочих автоматических и полуавтоматических устройств. Следовательно, прикладная кибернетика выступает естественным продолжением и дополнением прикладной механики. Более того, вся история механических устройств представляет собой историю совершенствования способов алгоритмирования.
        Изобретение автоматов и роботов
        Слово «автомат» в переводе с греческого означает самодвижущийся. Так называется механическое или электромеханическое устройство, способное без помощи мускульной силы человека или животного выполнять действие или цикл действий, производя при этом полезную работу. Автомат не синонимичен аппарату, который представляет собой любое техническое средство, оборудование, в т. ч. и неавтоматическое. Древние греки явились создателями первых самодвижущихся приспособлений.
        Наиболее ранний автомат в истории человечества - это, видимо, водяное колесо. Оно приводилось в движение речным потоком и в результате этого выполняло какую-нибудь простейшую работу. Знаменитые александрийские механики и геометры создавали более хитроумные приспособления, которые, однако, не нашли практического применения. Преимущественно это были механические игрушки, очень популярные в античности. Некоторые автоматы устанавливались в храмах, где открывали двери или приводили в движение статуи богов.
        Самым прославленным создателем игрушек и прочих автоматов эпохи эллинизма был изобретатель Герон Александрийский (III в. до н. э.). После падения Рима интерес к механике надолго пропадает, только удобное водяное колесо сохранилось с античности. Оно все чаще применяется в водяных мельницах. Ветряные мельницы появляются в Европе в X -XI вв., а наибольшее их распространение приходится на время последних крестовых походов на Восток. Ветряную мельницу тоже допустимо рассматривать в качестве автомата.
        Новый виток развития принесло позднее средневековье, когда в эпоху первого промышленного переворота механические приспособления получили широкое распространение. Ткацкие станки, часы, музыкальные и прочие устройства представляли собой примитивные механизмы, предназначенные для выполнения работы в автоматическом или, чаще всего, полуавтоматическом режимах. Конструирование полуавтоматических станков началось в XVI столетии. Действие этих устройств по большей части контролировалось работниками.
        Обслуживающий персонал приводил станки в действие.
        Шарманку по праву можно считать первым механическим устройством, работавшим по заданному алгоритму (программе).
        Известно, что мелодия в шарманке извлекается благодаря вращению металлического диска с штырьками. Эти штырьки перемещались по кругу и определенным образом воздействовали на механизм шарманки. Воздействие было как бы запрограммировано, т. е. представляло собой алгоритм, осуществление которого давало звучание одной последовательности нот, а не другой.
        Первоначально шарманки играли только одну мелодию - песенку «Шарман Катарина» («Милая Катарина»), отсюда и происходит их название. Музыкальные шкатулки и часы с мелодией также основаны на этом принципе. Впоследствии мастера по изготовлению шарманок догадались использовать сменные металлические диски. Меняя отыгравший диск на новый, музыкант-шарманщик менял тем самым мелодию. Дело в том, что на новом диске штырьки имели уже совершенно иное расположение, т. е. иначе воздействовали на механизм шарманки. Алгоритм менялся, что и приводило к смене режима работы.
        Механические часы являются самым настоящим автоматом. За счет завода они показывали время, отбивали каждый час, играли мелодии. Наиболее удачным автоматом такого рода следует назвать маятниковые часы. Они были изобретены X. Гюйгенсом во второй половине XVII в.
        Эпоха настоящей автоматики началась только после постройки паровой машины Дж. Уаттом, поскольку его устройство работало бесперебойно и почти не требовало контроля или участия человека-работника в технологическом процессе. Единственной задачей человека являлось снабжение топки углем и обеспечение поступления воды в котел.
        После открытия на рубеже XVIII -XIX вв. электрической силы судьба автоматики была предрешена. Самодвижущиеся устройства с тех пор стали подлинно самодвижущимися, поскольку функции человека сводились к подключению их к генератору электротока. Все остальное машина могла выполнить самостоятельно. Пристального контроля электромеханические автоматы больше не требовали. Но чтобы устройство обрело подлинную самостоятельность, требовалось найти способы заставить его работать по программе. Выполнение задания связано с соблюдением условий алгоритма.
        Конец XX столетия ознаменован рождением мехатроники. Эта наука представляет собой синтез механики и кибернетики, поскольку занимается созданием электромеханических станков с высокой точностью обработки деталей. Мехатроника использует компьютерное алгоритмирование технологических процессов, опирающееся на фундаментальные законы динамики, статики и прочих механических дисциплин. Причиной, по которой ученые создали мехатронику, явился досадный факт, что многие детали после станковой обработки приходится дорабатывать вручную.
        Мехатроника предлагает удобный выход из этой ситуации. Посредством теоретической механики рассчитывается оптимальный ход вращающихся и прочих подвижных элементов станка. Затем эти данные закладываются в компьютер, который рассчитывает алгоритм работы станка и согласует движение всех его частей. Электронный мозг периодически добавляет или, напротив, сбавляет обороты деталей. Алгоритмизированная обработка позволяет изготавливать очень сложные изделия.
        Рассказывая об автоматике и мехатронике, тесно связанных с компьютерным программированием, нельзя не вспомнить о роботах. Создателем самого раннего робота принято считать видного средневекового богослова и доктора философии Альберта фон Больштедта (XIII в.), названного современниками Великим. Альберт Великий - монах-доминиканец, канонизированный впоследствии католической церковью, обладал энциклопедическими познаниями. За это философу присудили титул «doctor universalis», т. е. всеобъемлющего доктора.
        Механическая служанка, которую якобы сконструировал этот неординарный человек, была способна выполнять несколько простейших функций и произносить отдельные фразы. Служанка исправно проработала в течение 30 лет. Она называлась андроидом. Слово «андроид» греческого происхождения и переводится на русских язык как «человекоподобный». Иногда роботов, форма которых воспроизводит человеческое тело, называют андроидами и в наши дни. После фон Больштедта больше никто не пытался создать столь сложную игрушку, и о роботах надолго забыли. Даже с наступлением эпохи автоматики в Новой истории о конструировании подобных машин никто не помышлял.
        Двадцатый век, полный событий в мире науки и техники, заставил пересмотреть взгляды на возможности автоматики. Активное развитие электромеханики и программирования, а также широкое внедрение автоматики в производство сформировали почву для проектов по созданию искусственных рабов, способных трудиться наравне с людьми и даже превосходящих человека по силе и выносливости.
        Впервые слово «робот» фигурирует в пьесе чешского писателя К. Чапека «P. У. P. (Рувимские универсальные роботы)». Автор удачного термина, как ни странно, не сам Карел Чапек, а брат писателя Йозеф. Карел предполагал назвать своих искусственных людей лаборжи, но название показалось ему слишком книжным. Тогда Йозеф, не проявивший особого интереса к пьесе, предложил наречь эти машины роботами от чешского «робота» - тяжелый труд.
        Долгое время робототехника так и оставалась плодом фантазии писателей и киносценаристов. Лишь развитие компьютеризации позволило обеспечить программирование не только математических вычислений, но и рабочих процессов, которые были записаны в виде алгоритмов. Таким образом, эпоха роботов фактически началась лишь в 1950-е гг. Появление первых станков с числовым программным управлением (станков с ЧПУ) следует расценивать как приход на производство первых роботов.
        Настоящие роботы вышли из лабораторий и попали на заводы только в 1970-е гг., во время компьютерного бума. Наиболее активно роботизация протекала в Японии, где в настоящее время робототехнику изучают в школах и высших учебных заведениях наравне с компьютерной грамотностью. Всего на японских предприятиях работает порядка 150 000 самых различных роботов. «Умные» машины осваивают многие другие сферы человеческой деятельности.
        Они вскрывают кейсы и багажники машин, где может быть заложена бомба. Роботы трудятся в условиях, вредных и опасных для человека. Эти устройства обслуживают длинные конвейерные линии, выполняя рутинную и тяжелую работу. Отличительными чертами робота, не свойственными станкам с ЧПУ, являются высокая мобильность, способность активно перемещаться в пространстве во время работы, умение точно оперировать деталями и инструментами. Чтобы робот ловко обращался с инструментом и обрабатываемыми предметами, он нередко снабжается манипуляторами - механическими руками.
        Эффективность работы современных манипуляторов настолько высока, что позволяет роботу на манер фокусника сложить карточный домик или пирамиду из куриных яиц, ловить бросаемый ему человеком мячик. Хотя, конечно, назначение робота состоит вовсе не в показе фокусов. Индустриальные роботы в большинстве случаев не похожи на людей. Они представляют собой мобильные устройства, приспособленные к выполнению разнообразных работ.
        В числе последних достижений робототехники следует назвать: робота-свиноматку, заботящегося о поросятах; строительный комплекс, состоящий из нескольких роботов, выполняющих все строительные работы - от закладки фундамента до штукатурных и малярных; шагающих роботов для переноса малых грузов по пересеченной местности; автоматических сборщиков автомобилей и многих других.
        Голливуд часто использует робототехнику для съемки фантастических фильмов. Роботы играют в большинстве случаев самих себя или монстров. С конца 1990-х гг. создаются первые образцы роботов-секретарей, способных выполнять разнообразную работу с персональным компьютером, офисной оргтехникой, заполнять типовые документы и бланки, отвечать по телефону в режиме автоответчика.
        В будущем ожидается широкое применение робототехники в сфере космонавтики. Частые неисправности на орбите отнимают у космонавтов от 1/3 до 2/3 рабочего времени на ремонт. Предполагается, что в будущем космические путешественники станут затрачивать на ремонтные работы до 107 % рабочего времени и более, т. е. космические исследования станут нерентабельными. Ремонтно-монтажные роботы, для которых выход в открытый космос безопасен, займутся работами по починке обшивки летательного аппарата, наладкой и настройкой внешнего оборудования, выводом спутников, монтажом антенн и каркасных ферм, прочими работами.
        Широкомасштабные исследования других планет могут выполняться исключительно роботами. Обычные автоматы для таких целей не подходят, т. к. космические исследования требуют от устройства наличия программного обеспечения и оснащенности сложными приспособлениями, включая манипуляторы и сенсорные датчики. Аппараты, снабженные таким оборудованием, перестают быть простыми автоматами и называются роботами.
        Скажем, первый в истории марсоход «Соджорнер», совершивший свое путешествие по поверхности красной планеты в 1997 г. (отключился в марте 1998 г.), является типичным роботом. Одиннадцатикилограммовый аппарат был снабжен небольшим компьютером, который выполнял сразу несколько функций: помогал марсоходу ориентироваться, снимал местность, проводил физико-химические опыты и передавал собранную информацию на станцию, которая ретранслировала сообщения на Землю.
        Некоторые люди всерьез опасаются восстания стальных рабов и уничтожения ими человеческой расы. По этой причине знаменитый писатель-фантаст А. Азимов даже сформулировал три правила, которые должны неукоснительно соблюдаться при конструировании роботов. Как всегда, реальность бесконечно далека от фантастики. Угроза со стороны роботов действительно существует, но она заключается вовсе не в надуманном покорении машинами мира людей. Робототехника опасна, причем иногда смертельно опасна, для здоровья людей.
        Движения заводского робота слишком быстры и неожиданны для человека-оператора, который работает в паре с машиной и управляет рабочим процессом. Роботы наносят человеку травмы самыми разными способами - ударяют манипуляторами, переносимыми деталями, прижимают к стене грузом или корпусом во время разворота, поражают рабочим инструментом во время движений. Программные ошибки, повреждения в сети питания, перепады напряжения, воздействие радиоволн приводят к тому, что устройство нередко ведет себя непредсказуемо и совершает незапланированные движения в области, где должен в безопасности находиться рабочий.
        Наконец, приводит к травмам и смертельным случаям на производстве нарушение техники безопасности со стороны самих работников. Первое убийство человека роботом произошло на японском заводе более 20 лет назад, в 1981 г. С тех пор смертность по вине роботов достигла в среднем 1,7 -2 человека в год. Ежегодно роботы только в Японии становятся причиной 6 случаев травм.
        У работников, обслуживающих роботов или выполняющих задание с ними в паре, развивается сильный стресс и наблюдаются заболевания, вызванные стрессовым состоянием, - нервозность, психические расстройства, нарушения сердечной деятельности, язвенная болезнь желудка. Причиной тому служит страх перед человекоподобным существом, обладающим колоссальной силой и явно превосходящим человека во многих отношениях. Рабочие боятся связанной с роботами безработицы, боятся отстать от робота, не могут расслабиться во время совместного выполнения задания.
        Справедливости ради нужно сказать, что роботизация не привела к безработице, но скомпенсировала устранение ряда профессий появлением новых рабочих мест. Благодаря роботам человек получил возможность избавиться от необходимости возиться в грязи и бездумно завинчивать гайки.
        Однако не стоит спешить избавиться от роботов. Нужно постараться приспособить их к ограниченным возможностям человека. В 1990 г. Международная организация труда (Швейцария) издала свод из 7 правил робототехники, которые непременно должны соблюдаться ради безопасности человека. Эти правила звучат следующим образом.

1. Назначение роботов, цель их создания - повышение благосостояния человека.

2. Робототехника может вытеснять человека только с опасных для него производств.

3. Программа робота включает в себя полное повиновение человеку, потому что машина не должна как-либо подавлять своего хозяина.

4. Ни под каким видом робот не должен причинять вред человеку, а в критических ситуациях машина обязана ценой собственной поломки обезопасить работника.

5. Замена человека роботом проводится только после получения согласия со стороны рабочего.

6. От инженеров требуется добиться обеспечения максимальной простоты управления роботом. Это устройство должно быть столь же легким в эксплуатации, как детская игра.

7. Необходимо запрограммировать робота на удаление по завершении задания, чтобы он не мешал людям и остальным роботам.
        Несмотря на наше неумение обращаться с робототехникой, высокоавтономные устройства станут разрабатываться и дальше. Фантасты представляют нам мир будущего, где различные работы выполняют исполинские андроиды. Судя по всему, инженерам действительно придется разрабатывать гигантов для выполнения разнообразных задач.
        В первую очередь таким машинам предстоит выполнять строительные работы и проводить космические исследования. Уже в конце 1980-х гг. американцы запланировали постройку исполинского шагающего робота для изучения марсианской поверхности, постройка которого начнется в ближайшие годы. Высота машины, которой заранее дали название - «Амблер», составит 7 м.
        Но больше всего ученых привлекают не гиганты, а карлики, т. е. нанотехнологии. Нанороботы отличаются крайне малыми, микроскопическими размерами. Они по своему строению, поведению, формам активности и деятельности копируют настоящие микроорганизмы. Но если человек в большинстве случаев лишен возможности управлять бактериями и простейшими, то миниатюрная робототехника полностью подчиняется своему создателю. С помощью нанороботов можно будет изготавливать сложнейшие детали, проводить ремонт разнообразных устройств, исследование рабочих циклов механизмов, осуществлять тончайшие хирургические операции.

3. Молекулярное строение вещества
        Велико в жизни и хозяйственной деятельности человека значение всех тех явлений, которые имеют отношение к температуре и теплоте. Подвигом Прометея считается то, что титан подарил людям огонь. При помощи огня человечество научилось не только готовить пищу, но и расчищать лес под посевы, обрабатывать металл. Сейчас понятия температуры и теплоты, а также связанные с ними явления окружают нас повсюду. Двигатели внутреннего сгорания, ракеты, атомные реакторы, электрокамины и многое другое - все это так или иначе связано с теплом. Поэтому в начале Нового времени в физике оформилось самостоятельное направление, известное как учение о теплоте.
        Кинетическая теория
        Учение о теплоте чаще всего называют в наши дни молекулярно-кинетической или просто кинетической теорией. Слово «кинетический» в переводе означает «относящийся к движению», а слово «молекула» буквально переводится как «массочка», т. е. крайне малая масса. Молекулы являются мельчайшими частицами вещества, сохраняющими его химические свойства. Если преобразовать молекулу, то вещество подвергнется химическому превращению и станет новым соединением. Однако молекулы обладают еще и физическими свойствами, которые тесно связаны с тепловыми процессами и явлениями. Кроме того, в данных процессах принимают участие прочие частицы, слагающие тела: атомы, ионы, электроны и др.
        Открыта природа температуры
        Изучение температуры тел тесно связано с познанием природы теплоты вообще. Еще в эпоху античности мыслители-натурфилософы задавались вопросом о том, что есть тепло и нагретость. Эти ученые выдвигали самые разнообразные умозрительные гипотезы, зачастую совершенно невероятные. Только в позднем средневековье утвердилось представление о температуре как о степени нагретости тела. Подобные представления привели к изобретению термометра, а он позволил приоткрыть завесу тайны, связанной с другими загадками температуры и теплоты.
        Новые открытия позволили усовершенствовать конструкцию термометра и разработать калориметрические приборы. Множество открытий принес XVII в., за время которого был совершен скачок в науке о теплоте. Выдающийся английский философ и ученый Ф. Бэкон, а вслед за ним и основатель картезианства, французский мыслитель и математик P. Декарт придерживались весьма своеобразного представления о теплоте и температуре. В то время эти понятия частично смешивались, поскольку оба феномена были взаимосвязаны и представляли собой две стороны одного явления.
        Тем не менее гипотеза Бэкона и Декарта была близка к истине. Они связали нагретость и тепло с незримым движением частиц - атомов и корпускул, из которых состоят физические тела. Но многие в то время придерживались галилеевской теории теплорода, которая восторжествовала в науке в XVIII столетии. Согласно этой теории, которая была неверной, теплота представляет собой как бы невесомую жидкость, перетекающую от одних тел к другим, сообщая им некоторую температуру.
        Гипотетическую невесомую жидкость, которая в действительности не существовала, окрестили теплородом. Против теории теплорода выступали выдающиеся отечественные ученые того времени, в первую очередь М. В. Ломоносов и Г. Рихман, которые первыми начали проводить калориметрические исследования. Рихман в 1744 г. вывел формулу для вычисления степени нагретости смеси любого количества масс воды, имеющих неодинаковые температуры. Основываясь на этой формуле, шотландец Дж. Блэк обнаружил «скрытую теплоту льда», иными словами, теплоту плавления льда.
        Ломоносов, сотрудничая с Рихманом, сформулировал основные положения молекулярно-кинетической теории. Он первым начал отличать атомы от молекул, внеся порядок в учение о теплоте. Несмотря на старания прогрессивных ученых, теория теплорода просуществовала в физике необычайно долго. Лишь промышленный переворот в XVIII -XIX вв. положил конец безраздельному господству ложной теории: она не могла реально объяснить преобразования теплоты в работу и наоборот, а именно эти процессы находились в центре внимания инженеров - создателей паровых машин.
        К кинетическому учению вновь вернулись, оно стало непрерывно совершенствоваться. Физики догадались, что степень нагретости означает выражение внутренней энергии тела, заключающейся в хаотическом движении молекул. Такое беспорядочное движение частиц получило название теплового, но нередко его именуют броуновским по имени английского ботаника P. Броуна, который мог наблюдать под микроскопом последствия движения молекул воды. Хотя броуновское движение и имеет одинаковую природу с тепловым, в действительности оно есть следствие теплового.
        Хаотическое тепловое движение характерно для всех объектов, включая твердые тела. Степень свободы у частиц твердого тела невелика, оттого их тепловое движение представляет собой ритмичные колебания вокруг одной точки. При нагреве внутренняя энергия тела меняется, его частицы начинают двигаться быстрее. В конечном итоге прежние связи разрушаются, таким образом твердое тело переходит в жидкость с повышением температуры. В жидкости велики силы сцепления, но они допускают большую подвижность молекул. С этой особенностью связано присущее жидкостям свойство текучести.
        Броун, разумеется, не мог наблюдать перемещений молекул, а лишь видел при помощи микроскопа смещения ничтожно малых растительных спор в воде. Подвижные водные молекулы ударяли по спорам растений. Суммарный удар большого числа молекул с одной стороны заставлял каждую спору двигаться в противоположную сторону, куда ударов приходилось меньше. Точно таким же образом молекулы соударяются одна с другой. Во время подобных соударений происходит обмен энергией. Всякому случалось опускать в горячий чай холодную ложечку, чтобы она его остудила.
        Данный пример демонстрирует одно из неизбежных последствий молекулярного теплообмена. Быстрые молекулы горячей воды ударяют в ложечку и расшатывают ее молекулы. Энергия водных частиц растрачивается, и чай действительно немного остывает, а вот ложечка при этом обычно сильно нагревается. Получается, что горячее то тело, молекулы которого имеют наибольшую скорость (максимальную энергию). Но это касается однородных тел. Воду можно перевести в газообразное состояние, если нагреть ее до температуры +100 °C, при которой человек получает ожоги.
        Однако водяной пар является газом, как и воздух, состоящий из смеси газообразных азота и кислорода. Тем не менее температура воздуха сравнительно низка, она не поднимается выше +56 °C. Дело в том, что молекулярное строение воздушных газов отлично от воды. Связи между их частицами непрочны и разрушаются уже при отрицательных температурах. Поэтому кислород становится газом при -182,96 °C, а азот - при -195,8 °C. В целом воздух как сложная смесь кипит при температуре -193 °C (все величины даны для нормального давления).
        Частицы в газах обладают максимальными скоростями в мире молекул, однако разные газы получаются при разных температурах. Кипение каждого вещества происходит, если сообщить телу некоторое количество энергии. Обычно говорят о теплоте кипения. Точно так же существует теплота плавления, обнаруженная Блэком. Здесь-то как раз и проявляется разница между температурой и теплотой. Чтобы нагреть тело до определенной температуры, требуется сообщить ему некоторое количество энергии, т. е. какое-то количество теплоты.
        Однако для перевода тела в новое агрегатное состояние (твердого - в жидкость, жидкости - в пар) недостаточно нагрева до температуры плавления или кипения. Нужно сообщить еще некоторое количество теплоты (энергии), которое пойдет на разрыв связей между молекулами. Вода кипит при температуре +100 °C. Однако легко представить, как надолго затянется попытка полностью перевести воду в пар посредством кипения.
        Чтобы вода выкипела, мало сообщить ей температуру кипения. Требуется придать жидкости количество теплоты, необходимое для выкипания - превращения всего объема воды в пар. Оттого, к слову, ожоги от пара гораздо болезненнее, чем ожоги от кипятка. Пар обладает большим запасом энергии, т. е. большим количеством теплоты.
        Кому-то может показаться, что энергия теплота тождественны. Отчасти так оно и есть. Теплота представляет собой т. н. тепловую энергию, особую разновидность энергии вообще. Этот вид энергии можно перевести в другие виды. На этом принципе основано строение всех тепловых машин: выделяемая ими теплота преобразуется в механическую энергию, которая становится работой.
        Воздух насыщен водяным паром. Как же получается, что человек не обжигается этим паром. Причин тому несколько, и открыты они были учеными не сразу. Следует сказать, что молекулы пара затрачивают свою энергию вследствие соударений с «холодными» воздушными молекулами. В результате скорость движения водяных частиц в атмосфере резко падает, пар остывает. Оттого в высших ее слоях протекают процессы конденсации, осаждения капельной влаги. Вода возвращается в жидкое состояние. Из бесчисленных мельчайших капелек складываются облака.
        Второй причиной является то, что мы не ощущаем ударов отдельных молекул, а газы в атмосфере сильно перемешаны. Поэтому конденсация влаги протекает лишь на больших высотах, где падение температуры воздуха более чем заметно. Смешение молекул с разными скоростями приводит к тому, что средняя скорость частицы воздуха резко отличается от максимально и минимально возможных значений. Получается, что воздух состоит из усредненных молекул, определяющих его температуру, которую можно ощущать и измерить.
        То же самое касается и всех остальных веществ в любом из агрегатных состояний. Внутри жидкости, газа и твердого тела (даже химически однородного, т. е. состоящего из одинаковых молекул или одинаковых атомов) всегда найдутся быстрые частицы и медленные. Любопытно, что нередко разница оказывается весьма существенной. Некоторые молекулы при средней температуре тела +20 °C двигаются неактивно: эти «ленивцы» преодолевают за единицу времени такое же расстояние, какое соответствует морозу в -50 -100 °C. Зато наиболее быстрые движутся на скоростях, отвечающих жаре в +100 -150 °C. Известны и более существенные расхождения.
        Если бы ученые располагали прибором, способным отсортировать молекулы по скоростям, то обычным воздухом в комнате (а стало быть, при комнатной температуре) удалось бы вскипятить без проблем 100 г воды. К сожалению, такой прибор невозможен. Он называется «демоном Максвелла», поскольку впервые именно английский физик Дж. Максвелл открыл разделение молекул по скоростям и указал на невозможность создания такого устройства. В природе не существует фильтра для быстрых и медленных молекул.
        Изобретение термометра
        Человек изобрел немало способов измерять температуру окружающих его тел. До нашего времени сохранились несколько градусных шкал температуры, построенных на основе первых термометров самого разного устройства. Поразительно, что элементарный градусник не является больше научным инструментом, хотя первоначально был таковым. Ныне он нашел широчайшее применение в промышленной химии, технике, метеорологии, ветеринарии и, конечно же, в медицине.
        Изобретателем замечательного измерительного прибора, полезного всем, являлся знаменитый человек. Самый первый градусник, как принято считать, создан великим механиком и астрономом Г. Галилеем, который разработал немало самых разнообразных технических приспособлений для проведения замеров во время своих экспериментов. Устройство Галилея, вошедшее в историю под названием термоскопа, сконструировано в 1597 г.
        Галилеев термоскоп не был проградуирован, так что мы не имеем полного права называть устройство градусником. Он представлял собой полый стеклянный шар, соединенный трубкой с водным сосудом. Воздух в шаре при изменении температуры сжимался или расширялся, и вода то поднималась в трубке, то опускалась.
        Официальное мнение относительно первенства Галилея в изобретении термометра спорно. Галилеево устройство, скорее всего, было первым научным инструментом, послужившим основой для создателей последующих моделей.
        Первый настоящий термоскоп был сконструирован александрийским механиком Героном. Принцип действия термометра Герона был схож с принципом действия термометра Галилея. Воздух в шаре с водой от нагрева расширялся и вытеснял воду наружу: она выливалась через особую трубочку в блюдце. Оба термоскопа являлись одновременно и бароскопами, потому что сильно зависели от атмосферного давления. Оно вносило погрешности в измерения. Сегодня удалось подсчитать, что изобретатели обманывались на 10 °C, хотя не подразумевали об этом, да и не смогли бы проверить сами себя.
        Более совершенные термометры, нередко снабженные градуированными шкалами, созданы во второй половине XVII в. Среди них - термометр Флорентийской академии опыта, а также градусник Санторио. Итальянец Санторио был врачом и применял свой самодельный градусник для измерения температуры у пациентов. То есть изобретатель впервые нашел одну из областей практического применения термометров.
        Принцип действия всех термометров был абсолютно одинаков. При нагреве некоторая мерная жидкость меняет объем - расширяется или сжимается. Столбик этой жидкости движется вдоль градуированной шкалы и показывает, насколько нагрета или охлаждена жидкость. Создать градусную шкалу долгое время не удавалось. Для этого требовалось выполнить два условия. Во-первых, нужно было найти в природе какую-то постоянную температуру, которая послужит эталонной отметкой. Во-вторых, требовалось четко определить величину одного градуса посредством мерного вещества.
        Первое условие было выполнено тогда, когда удалось эмпирическим путем установить несколько стабильных температур - человеческого тела, смеси льда и воды, водяного пара, а также некоторых других. Для тела здорового человека характерно наличие одной постоянной температуры. Сколько не измеряй ее термометром заданной конструкции, показания прибора останутся прежними. То же касается смеси льда и воды. Замерзающая вода имеет неизменную температуру, равно как, впрочем, и водяной пар. Позднее физики научились находить и другие постоянные температуры.
        Один из самых ранних термометров, оказавших влияние на развитие современной техники измерения температуры, был создан Реомюром. Его шкала, получившая название шкалы Реомюра, была градуирована при использовании всего одной постоянной точки. За эту точку была принята температура плавления льда, которую Реомюр обозначил как 1000 градусов. Она равна температуре замерзания воды (смеси воды и льда).
        Мерной жидкостью в термометре Реомюра служил спирт, имеющий такую плотность, при которой его коэффициент расширения равняется 0,0008. При нагревании или охлаждении на 1 градус Реомюра спирт менял объем на 0,0001 часть. Измерив с помощью своего термометра температуру кипения воды, физик получил величину 1080 градусов. Изобретатель исходил из предположения, что при каком угодно нагревании тепловое расширение мерной жидкости протекает равномерно.
        Поскольку пользоваться такой шкалой было неудобно, то со временем ее заменили на обновленную. Новая градуировка принимала за 0 градусов Реомюра температуру плавления льда, а за 80 градусов - температуру кипения воды. Хотя размер градуса остался прежним, основанным на спиртовом коэффициенте, нынешние термометры Реомюра в действительности ртутные.
        Голландский стеклодув Фаренгейт, шкала которого получила еще большее распространение в разных странах, в первую очередь в англоязычных, отталкивался в своих исследованиях от капризов природы. Зимой 1709 г. в Данциге были отмечены самые крепкие за последние 100 лет морозы. Поэтому Фаренгейт выбрал в качестве постоянной точки для градуирования шкалы своего термометра минимальную температуру, которую ему удалось получить при охлаждении на морозе смеси из нашатыря, поваренной соли и воды.
        Однако Фаренгейт на этом не остановился и взял для дальнейшего градуирования вторую постоянную точку. В своем выборе ученый последовал примеру великих физиков (в т. ч. Ньютона), конструировавших свои термометры на основе величины нормальной температуры человеческого тела. Причиной тому, впрочем, было не единственно подражание. В то время многие медики ошибочно полагали, будто воздух не нагревается в естественных условиях выше температуры тела человека. В противном случае люди бы погибли, т. к. кровь якобы не может существовать в жидком виде при температуре среды, равной ее собственной температуре.
        Таким образом, вторая постоянная точка шкалы оказалась также косвенно связанной с воздухом. На шкале были отмечены минимальная и максимальная температуры воздуха в естественных условиях. Интервал между двумя точками Фаренгейт разбил на 24 деления - градуса. Поскольку полученный отрезок оказался чрезмерно велик, то впоследствии Фаренгейт поделил каждый градус еще на 4 и новый отрезок стал называть градусом.
        Всего между постоянными точками шкалы находится 96 градусов. Температура кипения воды равняется 212 градусам. Следует заметить, что изобретатель придерживался в корне ошибочного мнения о постоянстве изменения объема при тепловом расширении, как и Реомюр. То есть оба считали, будто от нагрева или охлаждения на 1 градус объем меняется на строго заданную долю. В настоящее время известно, что изменение объема протекает не всегда одинаково. Фаренгейт допустил и другую ошибку. В то время было принято считать нормальной температурой человеческого тела +35 °C, именно эту отметку и взял за основу изобретатель.
        Шкала А. Цельсия, предложенная им в 1742 г., была гораздо более удобна. Прежде всего, эта шкала была стоградусной, т. е. рассчитанной на небольшой спектр температур. В пределах ее отметок объем мерной жидкости (ртути) меняется на строго определенную величину при изменении нагретости на 1 градус. Это коэффициент теплового расширения. За основу были выбраны наиболее известные своим постоянством температуры таяния льда и кипения воды, впервые найденные физиками X. Гюйгенсом и P. Гуком в середине XVII в. В современной физике стоградусная шкала не заняла ведущих позиций, хотя и является очень важной.
        Однако она широко применяется в медицине. Температуру человеческого тела во множестве стран измеряют по шкале Цельсия. Любопытно, что традиционные термометры Цельсия вскоре будут заменены на электронные, показывающие точную температуру на табло. Лишь значение градуса останется прежним. Созданы самые разные модели электронных термометров, среди них наиболее примечателен «шумовой» градусник. С повышением температуры тела человека молекулы в клетках начинают активнее двигаться, колебаться. В результате они создают сотрясения, генерирующие неслышимые шумы. Ученым удалось зарегистрировать молекулярный шум человеческого организма и измерить по этому шуму температуру с помощью электронной аппаратуры.
        Современная физика пользуется шкалой У. Томсона (лорда Кельвина). Численно 1 градус Кельвина (1 К) равен 1 градусу Цельсия, поскольку стоградусная шкала была весьма удобна в практических работах. Но шкала Кельвина имеет одну постоянную точку. Это т. н. абсолютный нуль, при котором молекулярное движение полностью прекращается. Данная температура равна -273,15 °C. Отрицательных температур на шкале Кельвина нет. Посредством такой шкалы можно измерять термодинамическую температуру, определяющую количество переданной от тела к телу тепловой энергии.
        Законы термодинамики
        Термодинамикой называется наука, изучающая все энергетические процессы в природе, опираясь в первую очередь на молекулярно-кинетическую теорию. Термодинамика рассматривает все физические тела как сложные системы частиц или как составные элементы большой системы тел. Превращения энергии в таких системах определяют специфику протекания внутренних процессов. Конечным итогом процессов нужно считать превращение всех видов энергии в теплоту и достижение системой теплового равновесия. Как и почему это происходит, объясняют три закона, или начала, термодинамики.
        Открыта энтропия
        Энергия - это способность тела совершать работу, хотя, естественно, наличие энергии вовсе не означает, что тело непременно будет работать и работать. Если какой-то человек математик, то это еще не означает, что он постоянно решает задачки. Если батарейка от электронных часов пригодна к использованию, то это не значит, что она должна быть немедленно использована.
        Тем не менее всякий вид энергии можно превратить при определенных условиях в работу. На человека в нашу эпоху работает тепловая, ядерная, электрическая, механическая и прочие формы энергии. Все перечисленные разновидности тесно взаимосвязаны, поскольку сравнительно легко превращаются друг в друга. Ядерная энергия на АЭС превращается в тепловую, нагревающую воду. Последняя превращается в пар, который порождает механическую энергию турбины, вырабатывающей электроэнергию.
        Электроток приходит с АЭС в наши дома, где превращается в волновую энергию светового излучения, когда мы зажигаем лампочки. Или вновь превращается в механическую энергию, когда мы включаем пылесос. Электричество приводит во вращение лопасти винта, порождающее потоки воздуха. Так совершается полезная работа. Нетрудно заметить, что полезная работа всегда соответствует переданной энергии. Работа атомного реактора - нагреть воду. Работа водяного пара - привести в действие турбину. Работа турбины - выработка электрического тока. Работа тока - вращение якоря в обмотке мотора пылесоса. Работа служит количественной мерой передачи энергии.
        Фактически тела способны обмениваться энергией лишь тремя способами - посредством совершения друг над другом работы, посредством теплообмена или массообмена. Конечный итог всех превращений энергии и любой работы есть образование тепловой энергии. Все природные процессы завершаются получением тепла. Ядерная энергия целиком переходит в тепловую, часть которой уходит в окружающую среду, а другая в работу. Интересно, что на работу затрачивается меньше тепла, чем рассеивается во внешней среде.
        Тепловую энергию практически невозможно использовать полностью, как, впрочем, и любой другой вид энергии.
        Водяной пар, взаимодействуя с турбиной, отдает ей и окружающей среде часть тепла. От этого он охлаждается и постепенно утрачивает способность производить работу. В итоге пар совершает меньше работы, чем получил энергии. Турбина из-за трения переводит часть полученной энергии в теплоту, т. к. разогревает детали. Ее полезная работа опять уменьшается. Электрический ток изначально обладает сравнительно большой энергией, однако часть ее расходуется впустую.
        Провода передачи оказывают сопротивление току, отчего он частично переходит в тепло. Уже меньшая часть электрической энергии поступает к бытовым приборам. Но и они не обладают способностью переводить все энергетические затраты в полезную работу: часть энергии непременно растрачивается на бесполезное тепло. Всякому известно, что мотор пылесоса от работы нагревается. Что касается лампы накаливания, то она получает излучение целиком за счет теплоты. В таких лампах нагревается вольфрамовая нить, которая начинает испускать световые волны.
        Первые исследования по превращению теплоты в работу провел французский инженер С. Карно, опубликовавший свои воззрения относительно теории теплоты в книге «Размышления о движущей силе огня» (1827 г.). Он разложил тепловую машину на три ее важнейших компонента - нагреватель, рабочее тело и холодильник. Нагреватель дает тепловую энергию рабочему телу, однако такая передача происходит только потому, что теплота стремится перейти от горячего тела к менее нагретому (холодильнику).
        Чем больше разница температур, тем интенсивнее перетекание теплоты. Разность энергетических уровней порождает работу. Точно так же высота плотины влияет на скорость падения воды, вращающей турбину. Чем горячее нагреватель в сравнении с холодильником, тем выше производительность рабочего тела. В паровой машине нагревателем служит котел, рабочим телом - расширяющийся от нагрева пар, толкающий под давлением цилиндр, а холодильником - окружающий воздух.
        Отработанный пар выбрасывается в окружающую среду и рассеивается в атмосфере, отдавая ей свою энергию. Таким образом, для наибольшей эффективности работы тепловой машины температура котла (двигателя) должна быть намного выше температуры воздуха. Коэффициент полезного действия машины зависит от разности названных температур. Он никогда не может превышать 100 %, поскольку машина использует определенное количество тепловой энергии. Эта изначальная энергия и равняется 100 %. Свыше имеющегося машина использовать не может.
        Кроме того, значительная часть теплоты должна перейти к холодильнику, иначе движение тепловой энергии остановится. Следовательно, рабочее тело получает намного меньше 100 %. Человеческий организм не является тепловой машиной, однако и для него справедливы законы сохранения энергии. Вот почему эффективность работы нашего тела составляет всего 30 %. Некоторые биологи полагают, что работа клеток, слагающих тело человека, гораздо выше и равняется 70 %. Скорее всего, так оно и есть, однако даже это число значительно ниже 100 %.
        В общем виде закон сохранения энергии звучит следующим образом. Поступление к телу тепловой и любой другой энергии численно равняется изменению внутренней энергии тела и совершенной этим телом работы. Целиком превратить сообщенную энергию в работу невозможно. Ведь сначала требуется изменить внутреннюю энергию рабочего тела. Но даже если нам каким-то образом удалось полностью использовать внутреннюю энергию тела, то оно после этого вовсе перестанет совершать работу. Закон сохранения энергии, имеющий много формулировок, представляет собой первое начало термодинамики.
        Карно утверждал, что в паровой машине тепло не потечет от холодильника к нагревателю. В дальнейшем физики P. Клаузиус и У. Томсон показали, что это утверждение справедливо для всех тепловых процессов. Теплота передается от тел только к менее нагретым телам. Данное утверждение представляет собой второе начало термодинамики. Доказывается оно сейчас посредством кинетической теории.
        При соударениях молекулы обмениваются энергией. В результате они как бы делят ее поровну, отчего приобретают некую усредненную скорость. Усреднение скорости частиц и выравнивание температуры при теплообмене приводит к тому, что молекулам становится нечем обмениваться. Система пришла к тепловому равновесию. Медленные молекулы могут при соударениях с быстрыми «отбирать» у тех скорость, а вот наоборот происходить не может. Делится тот, у кого есть, что делить. Оттого теплота не течет от холодных тел к нагретым.
        Любопытно, но сравнительно недавно - на рубеже XIX -XX вв. - научный мир был потрясен известием о «тепловой смерти» Вселенной. Некоторые физики проанализировали следствия из второго начала термодинамики и пришли к выводу, что рано или поздно придет время, когда беспорядочность теплового движения достигнет максимума. Тогда температуры во Вселенной сравняются, а значит, сравняются и энергетические уровни. Движение материи остановится, что приведет к ее самоуничтожению. Паника продолжалась до тех пор, пока австрийский физик Л. Больцман не показал, что беспорядок в микромире имеет предел.
        Тепловое движение частиц хаотично, а не направленно. Потому-то они никогда полностью не рассеют энергию. Ведь для этого нужно сознательно выбирать способ движения. Частицы сознанием не обладают, что очевидно, и беспорядка не получится, если молекулярное движение имеет конечную цель. Таким образом, хаос спасает мир. Если в одном месте Вселенной произойдет выравнивание температур (частичная «тепловая смерть»), то в другом, напротив, возрастет разность энергетических уровней.
        После приложения теории относительности Эйнштейна к космологии стало понятно, что объяснения Больцмана излишни. Даже частичная «тепловая смерть» не будет катастрофой. Колоссальные силы гравитации, сосредоточенные в массивных звездах и галактиках, имеют фантастически большой потенциал отрицательной энергии, которая будет сглаживать рост беспорядка.
        Больцман является первооткрывателем энтропии. Он ввел это понятие для описания меры беспорядка в природе. Энтропия любой системы подвижных частиц безудержно стремится к максимуму. То есть частицы и были бы рады перемешаться до полнейшего хаоса и усреднить энергетический потенциал системы, однако до тех пор, пока энергия системы постоянна, беспокойные молекулы вынуждены идти в обход энтропии.
        Мера беспорядка обусловлена вероятностью состояния системы, к которому пришли частицы. Это означает следующее.
        Вероятность подразумевает число способов, которыми реализуется то или иное состояние. Представим себе грабителя, намеревающегося попасть в дом купца. Грабитель плюс купец, с точки зрения физика, - это система. Энтропия системы минимальна, пока та находится в порядке. Для этого грабитель должен находиться на улице, а купец должен запереться у себя дома. Но система стремится к беспорядку, т. е. грабитель стремится попасть в дом купца. Произойдет смешивание частиц и, увы, выравнивание энергии.
        Грабитель знает, что в дом можно попасть через окно, чердак или дымоход. Таким образом, вероятность максимальной энтропии очень велика. Число способов, которыми система придет к беспорядку, равно 3. Однако, если бы купец забыл запереть дверь, то вероятность бы возросла. Все вещества ведут себя точно так же. Система молекул ни за что не придет к полнейшему беспорядку, но только к такой степени энтропии, которая наиболее возможна. В нашем случае грабителю легче попасть в дом через окно, но при этом он не может много унести с собой, поскольку уходить ему придется тем же путем. Энтропия максимума так и не достигнет.
        Посмотрим, какие превращения происходят с веществом по мере увеличения беспорядка. Если нагреть лед, то он растает. Его молекулы перейдут к беспорядку. Однако лед не превращается в пар, хотя это состояние соответствует максимальной энтропии. Однако вероятность такого состояния без дополнительных порций энергии исчезающе мала. Поэтому вода как система молекул предпочитает благополучно пребывать в жидком состоянии.
        Указанная причина объясняет, отчего на нашей планете преобладает вода в жидком агрегатном состоянии. Ее масса в тысячи раз превосходит суммарную массу ледников и водяного пара атмосферы, потому что данное беспорядочное состояние наиболее вероятно. На холодном Марсе преобладают ледники и, видимо, вечная мерзлота. Ледовые шапки активно испаряются под влиянием солнечного ультрафиолета. Здесь для воды такой путь увеличения энтропии наиболее вероятен. Жидкая вода на красной планете в нашу эпоху полностью отсутствует.
        Третье начало термодинамики было сформулировано в 1906 г. немецким физико-химиком В. Нерстом. Оно гласит, что по мере охлаждения тела до абсолютного нуля энтропия данного тела также уменьшается до нуля. Это естественно, поскольку при абсолютном нуле тепловое движение частиц - даже колебания атомов в узлах кристаллической решетки - полностью прекращается. А это означает, что беспорядок системы сводится на нет. Оттого, кстати, получить абсолютный нуль невозможно. Процессы в природе направлены на увеличение беспорядка. Технически человек сможет сколь угодно близко подойти к заветной температуре, но полностью движение частиц не остановит.
        Законы термодинамики формулировались в эпоху появления парового транспорта и автоматических заводских машин.
        Проекты и разработки двигателей для различных механических устройств заинтересовали тогда многих и породили потребность в исследовании природы теплоты. Предприимчивые промышленники переставали мечтать о «вечном двигателе» и желали иметь на заводах реально действующее оборудование.
        Изобретение паровой машины и автомобиля
        История изобретения тепловых двигателей чрезвычайно интересна и поучительна, поскольку является историей наоборот. То есть здесь изобретение как бы опережает открытие. Едва физики разработали термометрическую шкалу (1742 г.), заложили основы молекулярного учения о теплоте (1744 -1750 гг.) и ввели в науку понятие удельной теплоты парообразования (1757 -1760 гг.), как сразу же изобретатели начали трудиться над созданием тепловой машины.
        Принципов работы подобных механизмов тогда попросту не существовало, не были открыты все фундаментальные газовые законы, никто не подозревал о связи теплоты и энергии. Получилось иначе. Инженеры начали старт к новым технологиям со скромной теоретической базы, которая разрасталась и пополнялась открытиями по мере совершенствования изобретений. В учении о теплоте теория и практика следовали бок о бок, взаимно обогащая друг друга.
        Причины того, что практическое развитие тепловых двигателей несколько опередило теорию этих устройств, а затем следовало за ней по пятам, кроются в промышленном перевороте. Эпоха позднего средневековья и начала Нового времени ознаменовалась повсеместным распространением на производстве механизации. Однако механизация, всецело зависящая от мускульной силы, была одновременно и фактором, сдерживающим дальнейшее прогрессивное развитие индустрии. Первой тепловой машиной являлся паровой насос, причем одним из наиболее ранних устройств этого типа считается насос Сэвери, построенный в Англии в XVI столетии.
        Пар из котла насоса Сэвери подавался через перегонную трубку, снабженную вентилем, в специальный резервуар, заполненный водой. Поступающий под давлением пар вытеснял воду вверх по трубке, оснащенной клапаном. Затем пар остывал и конденсировался.
        Давление в этой трубке падало, но вода не опускалась обратно, т. к. тому препятствовал клапан. Зато снизу поступала вода, которую и призван был втягивать насос. Машина Сэвери предназначалась для откачки воды из шахт и применялась до середины XVIII в.
        Несколько раньше, в 1763 -1766 гг., русским изобретателем И. И. Ползуновым была сконструирована другая тепловая машина. Автоматический и непрерывно действующий паровой двигатель был рассчитан на приведение в движение станков, различных механизмов и подобных им устройств на алтайских металлургических и горнорудных заводах. Это была самая первая тепловая машина в истории, однако устройство сыграло, к сожалению, незначительную роль в развитии науки. О нем и его изобретателе никогда не узнали за рубежом и быстро забыли на родине.
        Более совершенным паровым насосом, чем устройство Сэвери, явилась машина, изобретенная английским кузнецом Ньюкоменом. Она была оснащена главным элементом теплового двигателя - поршневым цилиндром, который отсутствовал у насоса Сэвери. Несмотря на явные преимущества перед ранними типами тепловых машин, двигатель Ньюкомена мог применяться лишь в насосных установках.
        Он не был лишен принципиальных недостатков остальных паровых машин, не являлся автоматическим и действующим непрерывно. Машина работала лишь часть цикла, т. е. пока поршень шел вперед.
        Обратного хода поршня обеспечить не удавалось. Кроме того, устройство работало при условии, что обслуживающий персонал открывал и закрывал вентили.
        Паровой агрегат непрерывного действия был сконструирован только в 1782 г. Дж. Уаттом. Изобретатель понял, что машина для поддержания непрерывного функционирования должна выбрасывать пар по завершении хода поршня. На эту идею Уатта натолкнула, если верить историческому факту, прыгающая на кастрюле крышка. Пар выпускался специальным регулирующим устройством, отдаленно похожим на современный золотник.
        Первым транспортным средством, которое было оснащено тепловым двигателем, стал пароход. Название машины отражает отличительную особенность его технического устройства. Обычно датой изобретения парохода называют 1807 г., что совершенно неверно. Еще в начале 1780-х гг. на американских реках Потомак и Делавер курсировали действительно первые пароходы, сконструированные почти одновременно Дж. Рамсеем и Дж. Фитчем. Причем испытания парохода Фитча прошли столь успешно, что судно в дальнейшем регулярно выполняло грузоперевозки между Трентоном и Филадельфией в течение 1790-х гг.
        Пароход 1807 г. вошел в историю лишь потому, что принадлежал знаменитому изобретателю. Автор этой машины P. Фултон прославился благодаря своей творческой активности и стремлению получить признание. Известно, что Фултон предлагал пароход Наполеону Бонапарту. Несомненно, техническая новинка позволила бы императору победить своих противников, и течение истории приняло бы иной поворот.
        Однако Наполеон отверг предложение Фултона, о чем горько пожалел впоследствии. Любопытен факт, который остался без внимания многих историков техники. Задолго до Фултона к Наполеону обращался со сходным предложением некий маркиз Ж. д’Аббан. Он пытался продемонстрировать императору действие своего пироскафа, который представлял собой довольно примитивный пароход. К слову, Наполеон отверг и это предложение, явно недооценив значения техники для ведения военных действий.
        Любопытно и другое. Во время ссылки Бонапарта на остров Святой Елены неспокойный изобретатель вновь принимает участие в судьбе императора. Фултон предлагает для бегства Наполеона с острова свое новое изобретение - подводный пароход, первую в истории субмарину, известную под названием «Наутилус». Известно, что к постройке подводной лодки приступили, и грандиозный проект прервала лишь внезапная смерть Бонапарта в 1821 г.
        Таковы причины, по которым механические создания Фултона неизменно обращали на себя внимание историков. Однако ученые, несмотря на интерес к личности неординарного изобретателя, допустили и здесь серьезную ошибку. Почти во всех справочниках и учебниках содержится информация, что детище Фултона называлось «Клермонт». На самом деле судно именовалось «Пароходом Северной реки». Ошибка объясняется тем, что первым портом, куда заходил фултоновский пароход, был город Клермонт.
        Честь изобретения первого паровоза, послужившего основой для новых разработок, нашедших практическое применение, принадлежит англичанину Г. Стефенсону. Свой паровоз он построил в 1814 г. Любопытно, что во время опытных испытаний этого транспорта на специально сооруженной для этого железнодорожной ветке перед стефенсоновским паровозом шествовал человек. Скорость хода машины была смехотворной и позволяла легко обойти шагом первый паровоз. Человек-сопроводитель же (по профессии боксер) защищал устройство от разъяренных обывателей, которые сочли паровоз дьявольской машиной, отравляющей воздух.
        Окрыленный успехом Стефенсон построил первую настоящую железную дорогу. Открытие этой дороги, над проектом которой Стефенсон работал еще с 1825 г., состоялось в 1829 г. Дорога связала города Ливерпуль и Манчестер. Первый проезд по ней носил характер технического состязания. К тому времени несколько других видных изобретателей создали свои паровозы.
        На станции Рейнхилл состоялись паровозные гонки, в которых приняли участие 4 машины. Фактически должны были участвовать 5 паровозов, но отстраненный от состязания оказался лишь макетом: внутри устройства находились лошади. Паровоз Стефенсона назывался «Ракета» («Рокет»). Со стороны остальных изобретателей были выставлены паровозы «Упорство» («Персеверанс»), «Несравненный» («Сан-парей») и «Новинка» («Новелт»). Победила «Ракета», закрепив за своим создателем почетный титул первооснователя паровозного транспорта. Если нынешний век сотрясает компьютерофобия, то в те далекие времена многих охватила самая настоящая «паровозофобия».
        Баварское медицинское общество резко критиковало новомодные транспортные средства, утверждая, что они вредят здоровью. Паровоз может вызвать у человека болезнь скорости. «Совершенно очевидно, - вынесли свой приговор доктора, - что быстрое движение должно вызвать у пассажиров заболевание мозга, своего рода буйное помешательство… Государство обязано защитить по крайней мере зрителей, ибо вид быстро мчащейся паровой машины может вызвать подобное заболевание у них».
        Первый автомобиль, как и следовало ожидать, не был оснащен двигателем внутреннего сгорания. Это была паровая колесница, похожая на трехколесную телегу. Двигатель представлял собой паровой котел, сильно напоминающий чайник, который размещался в передней части машины. Создателем авто был французский изобретатель, капитан артиллерии Н.-Ж. Кюньо, который сконструировал свое детище в конце 1770-х гг. Уже в 1779 г., т. е. задолго до изобретения паровоза (!), машина была построена и использовалась как транспортное средство.
        Вода в котле кипела не постоянно, а с перерывами в 15 мин. Четверть часа автомобиль двигался за счет накопленной энергии и покрывал за это время до 1 км. В течение последующих 15 мин воду вновь кипятили. Несмотря на сравнительный успех паровозной техники в начале 1830-х гг., паровые автомобили тогда не пользовались популярностью. Английское правительство издало к 1831 г. около полусотни указов, ограничивающих свободу передвижения посредством автотранспорта.
        В 1865 г., когда паровоз и пароход окончательно отстояли свои позиции, автомобиль подвергся еще большим гонениям. Кульминацией этих гонений стал выход в свет «Закона о локомотивах». Изданный английскими властями, этот «Закон» строго регламентировал правила езды на авто. Ни один паровой автомобиль не мог в пределах города двигаться быстрее 4 км/ч (!), причем такую машину должен был сопровождать человек с флажком - всадник, который ехал перед автомобилем и оповещал о движении транспорта пешеходов и извозчиков.
        Британские власти всячески препятствовали распространению паровых автомобилей и инженерным работам по их усовершенствованию.
        Сходной позиции придерживались и прочие правительства во всем мире, хотя сегодня ясно, что паровой транспорт экологически чистый и безопасный. Помощниками правительств в начале XX столетия стали автомобильные магнаты - компании «Форд», «Олдс» и др. После того как паровой автомобиль победил на гонках во Флориде (США) в 1906 г., монополисты поняли, что проиграют в этой конкуренции. Паровой автомобиль развил скорость 205 км/ч, о чем в те времена не могли мечтать разработчики бензиновых двигателей.
        Что касается бензинового двигателя, то он был изобретен только в 1868 г. французом Авелем. Судьба этого устройства интересна.
        Когда закончились конструкторские работы по созданию «газолиновой повозки», как ее окрестили историки, началась франко-прусская война. Изобретатель, желая скрыть свое детище от прусской армии, зарыл повозку в защитный насыпной вал, перекрывавший неприятелю подступы к Парижу. После расчистки вала автомобиль обнаружить так и не удалось.
        В течение длительного времени разработки в данном направлении не велись, и только расцвет нефтяной промышленности привлек внимание к газолиновым устройствам. Газовый четырехтактный двигатель внутреннего сгорания был впервые построен спустя 10 лет после машины Авеля. Автором проекта выступил в 1878 г. немецкий изобретатель Н. Отто.
        Законы газов
        Учение о теплоте успешно развивалось во многом благодаря прогрессу в ряде остальных физических наук. Фундамент теоретических и практических знаний ученых и изобретателей XVII -XIX вв. опирается на положения о способности водяного пара совершать работу и о молекулярном строении вещества. Однако эти положения и сами должны иметь некий базис. Таковой возник после открытия давления воздуха, а впоследствии дополнился изучением свойств газообразных веществ. Механика и кинетическая теория газов, бурно развивавшиеся с середины XVII в., обогатили представления физиков о процессах в системах молекул и способствовали разработке замечательных технических изобретений.
        Открытие параметров газа
        Термин «газ» ввел голландский химик Я. Ван-Гельмонт для обозначения всех веществ, пребывающих в газообразном состоянии. Это слово происходит от древнегреческого «хаос», которое имеет два значения - беспорядок и сияющее пространство. Ван-Гельмонт выбрал, в чем он сам впоследствии признавался, последний вариант. Тем самым химик намеревался уже в самом названии показать, что газ «ничем не отличается от хаоса древних».
        Сегодня физикам известно, что для описания газа вполне подходят оба значения слова «хаос», потому что молекулы газа находятся в крайне беспорядочном состоянии. И все же мы всегда имеем дело с газом как сколько-нибудь упорядоченной физической системой. Дело в том, что подлинный беспорядок в газе возникает лишь во время рассеивания его в мировом пространстве.
        Огромные, растянувшиеся подчас на сотни миллиардов километров туманные скопления холодного газа во Вселенной расширяются во всех направлениях, встречая лишь слабое сопротивление космической среды, а именно одиночных частиц и излучения. Молекулы и атомы расходятся по разным направлениям. Лишь конечность скорости препятствует стремительному рассасыванию газовых туманностей.
        На Земле и других планетах газ пребывает в более или менее упорядоченном состоянии. Во-первых, благодаря силе тяжести, действующей на все без исключения планетные тела, газ здесь обладает весом. Далее (о чем уже сообщалось в разделе о давлении воздуха) в замкнутом пространстве газообразное вещество приобретает давление. Если в мировом пространстве значительно разреженные туманности не обладают реальной температурой, то газы в ограниченном объеме способны аккумулировать лучистую энергию солнца.
        Температура, в свою очередь, влияет на давление. Например, земной воздух от неоднородного нагрева становится легче в одной местности и вытесняется более прохладным и тяжелым, поступающим из соседних регионов. Перемещения легких и тяжелых масс связаны с неравномерным распределением воздушного давления и порождают потому ветер и перемены погоды. Воспетые романтиками морские бризы являют собой типичный пример замены воздушных теплых и холодных масс на границе суши и моря в течение суток.
        Не менее часто случается наблюдать и другой процесс. Знаете ли вы, отчего на больших высотах воздух холоден, хотя он там ближе к потоку солнечной энергии? Солнце не нагревает воздух напрямую, он получает солнечное тепло, отраженное землей или отданное океаном. Поэтому теплые массы воздуха скапливаются в приземном слое. Они легче, чем вышележащие холодные массы, а потому постепенно вытесняются ими. Легкий воздух вытесняется тяжелым вверх, расширяется в высших слоях атмосферы, где пространство больше, и оттого остывает.
        Таким образом, система газообразного тела обладает еще одним параметром - объемом, который тесно связан с температурой и давлением. Плодотворно изучать свойства газов оказалось возможным лишь после того, как физики пришли к представлению о существовании трех названных параметров и вывели т. н. газовые законы. Эти законы провозглашают взаимосвязь между различными параметрами. Короткий рассказ о земной атмосфере и происходящих в ней явлениях убеждает, сколь разнообразны подобные взаимосвязи и как необходимо их изучение для познания физики газов.
        Открытие атмосферного давления в середине XVII в. послужило отправной точкой для начала глубоких, всесторонних исследований свойств газа. Эти исследования были обусловлены также растущими нуждами промышленности, которая нуждалась в химическом производстве, а в дальнейшем начала использовать силу пара в тепловых машинах. Уже в XVII столетии был открыт один из классических газовых законов, вошедший во все учебники физики. Его авторами были англичанин P. Бойль и француз Э. Мариотт, которые почти одновременно и независимо друг от друга пришли к открытию этого закона.
        Закон Бойля-Мариотта касается изменяющихся параметров газа постоянной массы, как, впрочем, и все остальные газовые законы. Масса должна быть постоянной, поскольку это означает неизменное количество молекул. Бойль и Мариотт проводили в целом сходные опыты, не имевшие принципиальных отличий. В частности, Бойль использовал изогнутую стеклянную трубку, которую заполнял ртутью через ее открытый конец, тогда как второй был запаян. Изгиб делил трубку на два неравных колена - длинное с открытым концом и короткое с запаянным концом.
        По мере прибавления ртути в длинном колене жидкий металл оказывал все большее давление на воздух, который оказался «запертым» в коротком колене с запаянным концом. Поэтому Бойль имел возможность наблюдать процесс сжатия воздуха по мере возрастания давления. Рассчитать давление было нетрудно, поскольку объем добавленной в трубку ртути был ученому прекрасно известен. Измерения показали, что при неизменной температуре изменение давления обратно пропорционально изменению объема.
        Закон Бойля-Мариотта имеет любопытные следствия. Например, этот закон гласит, что скорость истечения газа из емкости не зависит от давления этого газа. Внешнее давление, если оно меняется, будет оказывать влияние на истечение газовой струи, но никак не на собственное. Истечение газа в вакуум полностью подтверждает справедливость этого утверждения. Сжатый газ при любой силе сжатия вытекает с одинаковой скоростью. Причиной тому является взаимосвязь газовых параметров. Так как объем обратно пропорционален давлению, то плотность газа (масса на объем) прямо пропорциональна давлению.
        Получается, что стоит сжать газ с большей силой, как пропорционально возрастает плотность и масса вещества истекающей струи. Масса и сила связаны по второму закону Ньютона. Их отношение дает ускорение. Поскольку масса и сила изменяются пропорционально друг другу, ускорение останется неизменным. А значит, и скорость струи газа не увеличится. Другим удивительным следствием газового закона является то, что он зачастую не соблюдается.
        Рассмотрим другой пример. На дне океана находится пузырек воздуха. С какой глубины он сможет подняться? Всем прекрасно известно о страшном давлении воды на больших глубинах, способном раздавить корпус подводной лодки. Естественно, пузырек будет сжиматься, и на определенной глубине плотность воздуха сравняется с плотностью воды. Воздух перестанет быть легким, следовательно, пузырек не сможет всплыть.
        Поскольку, согласно закону Бойля-Мариотта, плотность газа прямо пропорциональна его давлению, то не будет ошибкой предположить, что при давлении 81 040 кПа (в 800 раз больше атмосферного) воздух сожмется в 800 раз. Его плотность окажется в 1,03 раза выше плотности воды. Поскольку такое давление царит на больших глубинах Мирового океана (свыше 4000 м), то практически нигде здесь воздушный пузырек не может всплыть на поверхность. Однако в таких рассуждениях как раз и содержится ошибка.
        Закон Бойля-Мариотта справедлив лишь для небольших давлений. При столь существенном сжатии он уже перестает действовать. Полностью соответствует закону идеальный газ - модель, в которой игнорируются размеры молекул и их взаимное отталкивание. В природе из всех реальных газов подобен идеальному только водород, и то его молекулы не позволяют свободно менять давление и плотность газа. Воздух же отступает от действия закона уже при сжатии до давления 20 260 кПа (в 200 раз больше атмосферного). Его плотность превосходит плотность воздуха при нормальном давлении всего в 190 раз.
        Дальше отступления от закона Бойля-Мариотта становятся все более существенными. Под давлением около 81 МПа плотность воздуха возрастает примерно в 400 раз, что в 1,9 раза меньше плотности воды. Воздух становится практически несжимаемым при давлении 151 980 кПа. Чтобы довести его до плотности воды, потребуется приложить давление 506 625 кПа, т. е. свыше 500 млн Па! Таким образом, пузырек воздуха всплывет даже со дна Марианской впадины (11 022 м) - самого глубокого желоба Мирового океана.
        К слову, все прочие газовые законы - Шарля и Гей-Люссака - справедливы также при низких давлениях и температурах, близких по значению к норме. Под нормой, а точнее, нормальными условиями в физике понимаются условия с температурой +20 °C и атмосферным давлением (101 325 Па, или приближенно 101,3 кПа). Вообще, оба названных газовых закона следует считать законами Гей-Люссака, именно так они и называются во многих книгах. Дело в том, что именно этот ученый вывел оба закона, хотя обоснован один из них (изохорический) был Шарлем.
        Оба закона показывают изменение температуры сначала при постоянном давлении, а затем при постоянном объеме. Впоследствии, в середине XIX в., на основании найденных Бойлем, Мариоттом, Шарлем и Гей-Люссаком соотношений английский инженер Б. Клайперон и великий русский химик Д. И. Менделеев вывели объединенный газовый закон. Он гласит, что отношение произведения давления на объем к температуре газа есть величина постоянная.
        Дизельный двигатель и другие изобретения
        Благодаря соотношению газовых параметров удалось объяснить принципы адиабатического процесса в газах, протекающего на больших высотах в атмосфере, когда расширяющийся воздух остывает. Изменение объема и давления этого воздуха происходит одновременно и вызывает вполне естественное изменение температуры. Кинетическая теория добавляет к этой зависимости свое толкование. Воздух затрачивает внутреннюю энергию на такое расширение. Поскольку нагретость газа является условной мерой энергии движения молекул, то падение энергии неизбежно приводит к понижению температуры.
        Дизельный двигатель был сконструирован при попытках повысить коэффициент полезного действия обыкновенных автомобильных двигателей внутреннего сгорания. Если при адиабатическом расширении газа его температура сильно падает, то обратный процесс - сжатие - должен приводить к существенному повышению температуры. Чем горячее сжатый газ, тем быстрее он сгорает. Горение при высоких температурах повышает эффективность работы двигателя.
        Но в двигателях внутреннего сгорания сильно сжимать газ невозможно. Если превысить нормальное сжатие более чем в 5 раз, то газ воспламеняется значительно раньше положенного времени. Горючее вещество детонирует, что может привести к взрыву.
        Немецкий изобретатель P. Дизель в конце XIX в. сконструировал двигатель нового типа, где эта проблема решалась сама собой. Начальный вариант устройства был предложен конструктором в 1897 г. Двигатель Дизеля, называемый ныне просто дизелем, позволял развивать 10-кратное сжатие газа.
        Любопытно, что самим газом является не горючее вещество, а просто воздух. Он разогревается настолько, что в нем самовоспламеняются капельки жидкого топлива (прежде это была главным образом нефть). Оно намеренно разбрызгивается через форсунку посредством нагнетаемого компрессором воздуха. Сегодня наличие такого компрессора не является обязательным, он отсутствует на многих моделях дизеля. Температура сжатого воздуха в дизеле составляет +600 °C. Двигатель не нуждается в системе зажигания и способен работать на неочищенном топливе, в т. ч. и на нефти. У дизеля есть и множество других достоинств.
        Один из самых первых массовых дизельных двигателей был поставлен в 1921 г. на тракторе марки «Ланц-Бульдог» германского производства. Примечательной чертой раннего дизеля следует назвать особенности его работы. Двигатель запускался посредством 10-минутного разогрева головки цилиндра. Для этой цели тракторист использовал паяльную лампу.
        Когда эта процедура была выполнена, тракторист нацеплял съемное рулевое колесо на ось маховика и раскручивал последний. Затем рулевое колесо возвращалось обратно на колонку. Чтобы двигатель начинал вращаться в обратную сторону, трактористу требовалось сбавить число оборотов до предельно минимального значения и резко дать газ. Только таким способом удавалось добиться движения трактора задним ходом.
        В наше время обращение с двигателем значительно упростилось, хотя устройство по-прежнему требует от водителя высокой технической культуры. Устанавливать дизель на автомобили не совсем удобно, хотя ряд его несомненных преимуществ перед четырехтактным газовым двигателем заставил инженеров поработать и в данном направлении. Широкое распространение легковые автомобили на дизелях получили только в 1970 -1980-е гг. Какова окажется дальнейшая судьба этого вида транспорта, покажет будущее.
        Газовые законы обязательно учитываются при изготовлении кислородных и других газовых баллонов, манометров, судов на воздушной подушке и прочих устройств. Подводные исследования с аквалангом, организованные благодаря Ж.-И. Кусто, обязаны своим проведением физике газов. Если бы создатели приспособлений для подводного плавания не учли сжимаемости воздуха, то аквалангисты непременно погибли бы. Читатель наверняка удивится, когда узнает, что человек не может находиться на глубине свыше 2 м.
        Уже глубина в 60 см плохо влияет на сердечную деятельность и дыхание, а метровые глубины для многих опасны. Так происходит, если ныряльщик дышит воздухом, давление которого равно атмосферному. Давление воды на грудную клетку человека значительно выше, и если оно не уравновешивается противодавлением, то это неизбежно приведет к физиологическим нарушениям. Данное утверждение было проверено учеными на себе в смелых опытах. Экспериментаторы пытались дышать атмосферным воздухом через соломинку, пребывая на глубине 2 м.
        Баллоны акваланга заполняют сжатым воздухом, а для больших глубин, во избежание появления у аквалангистов кессонной болезни, используют смесь кислорода с гелием, т. н. гелиокс. Соотношение компонентов газовой смеси подбирается опять же таким образом, чтобы ее давление уравновешивало давление воды на тело ныряльщика.

4. Познание мироздания
        При слове «мироздание» современный человек традиционно представляет бесконечную черноту космоса, густо усеянную звездами, и несущуюся в этой пустоте по своей орбите нашу бело-голубую планету под названием Земля. Эти образы стали частью мироощущения современного человека сравнительно недавно. Еще тысячу лет назад подавляющее большинство людей верило в то, что Земля имеет плоскую форму, мирно покоится на слонах, золотой лягушке, гигантской черепахе, китах и прочих реальных или полусказочных животных.
        Процесс познания строения Вселенной был чрезвычайно долог, полностью он не завершился и по сей день. Выдающиеся открытия позволили человеку заново увидеть космос, а созданные при помощи этих открытий замечательные изобретения способствовали началу эры космонавтики - времени покорения мирового пространства.
        Полет к звездам
        Возможно, это покажется в какой-то степени странным и необычным, но все фундаментальные физические законы, вскрывшие тайны космоса, послужили базисом не только для астрономии. На их основе сформировалась современная космонавтика, т. е. были изобретены технические средства для дальнейшего познания Вселенной. Получается замкнутый круг, в котором положительный эффект от одного события увеличивается последующим. Цепочка взаимосвязанных открытий и изобретений проложила человечеству дорогу в космос, которую писатели давно образно окрестили дорогой к звездам.
        Открытие количества движения
        Первооткрывателем количества движения явился великий французский ученый и мыслитель XVII столетия, основатель дедуктивного метода мышления P. Декарт. Он предположил, что при столкновении двух движущихся тел происходит обмен движениями. Одно из тел ускоряется, а второе, напротив, замедляется. Но в целом количество движения остается неизменным. То есть сумма количеств движения обоих тел сохраняет свое прежнее значение.
        Например, примем количество движения тела А за 5 единиц, а тела Б - за 10 единиц. Естественно, абстрактные единицы здесь взяты вместо реальных для большей наглядности. При обмене количеством движения во время столкновения тела приобрели новые значения количества движения: для А оно равно 7, для Б - 8. Сумма, однако, не изменяется, она остается равной 15 единицам. Названная физическая величина представляет собой произведение массы тела на его скорость.
        Обычно ученые называют количество движения импульсом тела. Не следует путать импульс тела с импульсом силы, который равен произведению силы на время ее действия. Читателя может удивить, откуда взялись столь странные величины. Они выведены из второго закона Ньютона. Согласно этому фундаментальному закону механики, под действием силы массе можно сообщить некоторое ускорение, причем масса и ускорение прямо пропорциональны значению силы.
        Отсюда становится ясно, что за время, пока действует сила, происходит изменение скорости (ускорение) массы. Так как произведение времени на силу есть импульс силы, а произведение массы на скорость есть количество движения, то получается, что изменение количества движения равно импульсу силы.
        Разумеется, все это было открыто не сразу. Сначала И. Ньютону предстояло сформулировать законы динамики. К слову, когда великий англичанин открыл второй закон динамики, то выразил его посредством декартовой величины - импульса тела. В формуле Ньютона ускорение полностью отсутствует, будучи замененным на более корректное выражение - изменение импульса тела за единицу времени. Ускорение ввели другие ученые, развивавшие классическую механику в посленьютоновский период. Они же тем самым невольно все испортили.
        Формула Ньютона легко преобразуется в релятивистское выражение, которое учитывает изменение массы на больших скоростях. Релятивизм (теория относительности), предсказывает, что масса тела, движущегося на околосветовой скорости, существенно меняется. Ньютон не мог предвидеть этого открытия, сделанного на рубеже XIX -XX вв., но гениальный ученый подобрал наиболее верную и удобную форму для выражения физического закона и тем самым опередил научную мысль своего времени.
        Если через второй закон динамики в механике закрепляется понятие импульса тела, то через третий закон обосновывается сохранение этой величины. Но все же не будем умалять заслуг Декарта. Он, конечно, не мог сформулировать понятие импульса тела так, как это сделали впоследствии Ньютон и другие механики. Однако заслуга выдающегося французского мыслителя состоит в другом. Он открыл универсальный закон природы, который послужил отправной точкой и для Ньютона, и для других физиков.
        Наиболее существенным следствием из закона сохранения количества движения является закон сохранения материи. Впервые этот закон вывел М. В. Ломоносов, выразив его в виде химического закона сохранения количества вещества: «Все перемены, в натуре [в природе] случающиеся, такого суть состояния, что сколько у одного тела отнимется, столько присовокупится к другому». Ломоносов обосновывает этот закон по аналогии с декартовым законом сохранения импульса тела:

«Сей всеобщий естественный закон простирается и в самые правила движения: ибо тело, движущее своею силою другое, столько же оныя у себя теряет, сколько сообщает другому, которое от него движение получает».
        В настоящее время материя признана естествознанием неуничтожимой, постоянной. Поэтому законы сохранения всегда справедливы, они являются следствием сохранения количества материи во всех ее формах. Физиками выведены на сегодняшний день законы сохранения количества движения, момента количества движения, работы, механической энергии, полной энергии, зарядов (электрического и др.), изоспина.
        Интересно одно удивительное следствие из закона сохранения импульса тела. Если тело обладает способностью отбросить значительную часть своей массы, то перед нами уже система из двух тел, обменивающихся импульсом. Существуют ли в природе такие необычные тела? Да, они существуют. Более того, эти тела вполне обычны. В их числе стоит и человеческое тело. Оно неразрывно связано с Землей, образуя как бы единое целое. Однако силой мышц человек способен… отбросить от себя планету. На самом деле люди отталкиваются от Земли, но эффект получается равный.
        Идущий по тротуару пешеход ежесекундно отбрасывает от себя земную массу, что и позволяет ему двигаться. Чем выше скорость отделения земной массы, тем выше скорость нашего движения. Отдача оружия основана на том же принципе. Ружье выбрасывает снаряд со столь большой скоростью, что и само начинает двигаться в противоположную сторону. Некоторые изобретатели в конце XIX столетия задались вопросом, что произойдет, если стрелять постоянно. Очевидно, можно будет двигаться вместе с оружием, чуть ли не лететь на винтовке или пушке!
        В 1897 г. академик И. В. Мещерский вывел уравнения для движения тела, постоянно отбрасывающего часть своей массы. Само движение такого рода получило название реактивного. Из уравнений Мещерского следует, что на тело переменной массы действует т. н. реактивная сила, прямо пропорциональная массе отброшенного вещества и скорости удаления последнего относительно тела. Направление этой силы противоположно движению отброшенного вещества и создает реактивную тягу, заставляющую тело двигаться в том же направлении, что и сила. Вот почему оружие отдает при стрельбе в сторону, противоположную полету снаряда. Открытие реактивной тяги позволило сконструировать принципиально новый род техники - космические ракеты.
        Изобретение реактивного двигателя
        Реактивное движение впервые было открыто самой природой. Оно широко применяется многими живыми существами. Медузы, например, перемещаются в толще воды, порождая реактивную тягу своими колоколами. Ритмично расширяя и сжимая колокол, медуза то вбирает в него воду, то выталкивает ее. В результате выброса из своего тела большой массы вещества (воды), медуза толкает сама себя вперед. Тем самым примитивное морское животное более успешно повторяет трюк барона Мюнхгаузена, якобы вытащившего себя за волосы из болота.
        Удачливее оказались кальмары. В процессе эволюции эти головоногие моллюски приобрели мощную водометную установку, способную быстро выбрасывать большую массу воды через специальное сопло. Благодаря такому приспособлению кальмары развивают невиданные скорости. Некоторые виды даже научились искать спасения от хищника в воздушной среде. Уплывая прочь от преследователя, эти т. н. летучие кальмары разгоняются до скорости, позволяющей им выпрыгнуть из родной водной стихии и лететь некоторое время в воздухе.
        О существовании реактивной тяги люди догадывались давно. Доказательством тому служит способ надувания парусов, который сводится к следующему. Кормчий судна устанавливает на корме мехи, в которые закачивает воздух. Полными мехами затем надувается парус, и судно таким способом приводится в движение. До открытия законов реактивного движения люди поняли, что способ неосуществим и судно двигаться не будет.
        Сформулированный позднее закон реактивного движения объясняет, почему так происходит. Сила ветра, производимого мехами, равна реактивной тяге, развиваемой этими же мехами и направленной в противоположную сторону. Результирующая двух равных по модулю и противонаправленных сил всегда равна нулю. Стало быть, судно должно было неподвижно стоять на месте.
        Одним из наиболее примечательных устройств, сконструированных Героном, была реактивная сфера. В ней находилась вода, которая на пламени доводилась до кипения. Пар выходил из сферы через изогнутые трубки и силой отдачи заставлял сферу вращаться. Это устройство отдаленно напоминает сегнерово колесо и фактически является первой в истории паровой турбиной.
        Ньютон, опираясь на свой закон противодействия, развил идею реактивного автомобиля. Впервые такие автомобили были сконструированы в 1928 г. и работали на сложном химическом топливе. Автомобиль Ньютона был оснащен паровым двигателем. Нагретый пар с силой выбрасывался из сопла и приводил устройство в движение. В начале Нового времени изобретатель Ремзи предлагал проект парохода, который под напором выбрасывает из специальных резервуаров воду, чем приводит себя в движение. Проект Ремзи так и не был осуществлен, но зато натолкнул P. Фултона на идею создания обыкновенного парохода.
        Китайские хроники сообщают, что ракетное летательное устройство было изобретено задолго до настоящего времени. Пятьсот лет тому назад, в 1500 г., человек по имени Ван-Ху изготовил аппарат, поднимаемый над землей силой реактивной тяги. Тягу создавали 47 пороховых ракет, использовавшихся китайцами для организации фейерверков. Ракеты были привязаны Ван-Ху к обыкновенному плетеному стулу, на котором изобретатель мечтал совершить полет.
        По приказу Ван-Ху все 47 ракет были одновременно зажжены. Если верить хроникам, стул поднялся вместе с изобретателем и улетел высоко в небо, после чего этого человека никто больше не видел. Затем в течение длительного времени люди изобретали массу всевозможных устройств, предназначенных для полета, преимущественно нереальных, фантастических, а подчас и просто комических. Даже в произведениях великого французского фантаста XIX в. Ж. Верна нет ни намека на использование реактивной тяги для космических полетов, о которых он так много писал.
        Идея ракетного двигателя зародилась на рубеже XIX -XX вв. Она заинтересовала одновременно нескольких ученых и инженеров. Наиболее полно она была проработана в трудах замечательного ученого-самоучки К. Э. Циолковского. В 1900 -1903 гг. он окончательно обосновал необходимость использования реактивного двигателя для осуществления межпланетных перелетов и прочих космических путешествий. Аэропланы и дирижабли не могут совершать полетов в пустоте межпланетного пространства, поскольку они опираются на воздух, а в пустоте опираться не на что. Необходимо, чтобы движущая сила исходила из самого тела.
        Если оно станет ежесекундно терять большую часть своей массы и на высокой скорости ее отбрасывать, то в результате придет в движение в любой среде - воздухе, воде и даже вакууме. Запасом такой балластной массы послужит топливо. Оно будет непрерывно сжигаться и выбрасываться через сопло. Возникнет реактивная тяга, и ракетный снаряд будет увлечен ею в направлении, обратном потоку газов от сгоревшего топлива. Интерес к ракетным летательным устройствам возник в обществе после научного признания трудов Циолковского.
        Ученый активно сотрудничал с энтузиастами ракетной техники. Приверженцем идей Циолковского и его последователем был М. К. Тихонравов - изобретатель первой в мире жидкостной ракеты ГИРД-09. Естественно, этот снаряд не был предназначен для полетов в космическое пространство. Он был рассчитан на полеты в высшие слои атмосферы. Аббревиатура ГИРД расшифровывается как Группа изучения реактивного движения. В состав этой группы, помимо Тихонравова, входили замечательные конструкторы ракетной техники ФА. Цандер и С. П. Королев.
        Дальнейшая история отечественной и мировой космонавтики связана с именем Королева, под руководством которого проводилось создание и запуск первых искусственных спутников Земли, первых орбитальных биолабораторий, первых лунников и первых пилотируемых космических кораблей. Современные космические ракеты представляют собой сложные, высокотехничные устройства.
        Эти снаряды имеют четыре т. н. ступени - блоки с реактивными двигателями и запасами топлива. Дело в том, что пустые, отработавшие топливные баки создают балластную массу для ракеты. Поэтому понадобилось оснащать ее отделяемыми ступенями. Как только одна из ступеней истратит свой запас горючего, она отбрасывается. Это значительно уменьшает массу ракеты.
        Среди последних крупных достижений мировой космонавтики следует отметить создание Международной орбитальной станции, сборка и заселение которой начались в 2001 г. Примечательны также и другие проекты, например полет зонда «Галилей» к Юпитеру в 1989 -1995 гг. Работа зонда на орбите вокруг этой планеты продолжалась по 2000 г. В 1997 г. был запущен и подключился к нему Зонд «Кассини», окончательной целью путешествия которого является прибытие к Сатурну и детальное обследование его спутника Титана. Прибытие к этой планете произойдет в 2004 г.
        Интересны полеты автоматических станций (АС) «Лунар Проспектер» в 1998 г. и «Марс Одиссея-2001», продолжающиеся в настоящий момент (2001 -2002 гг.). На каждой из этих станций был установлен детектор нейтронов, необходимый для поиска грунтовых вод. Детектор АС «Лунар проспектер» обнаружил ледяные шапки в полярных районах Луны. Детектор АС «Марс Одиссея-2001» ведет поиск грунтовых вод на красной планете.
        Итак, возможен ли полет к звездам, о котором никто никогда не слышал? Вполне возможен, причем как в теории, так и на практике. В такой полет было отправлено уже несколько автоматических станций, проводивших исследования дальних планет Солнечной системы.
        Американский аппарат «Пионер-10» удалился за орбиту Плутона 15 февраля 1986 г., став первым устройством, покинувшим пределы Солнечной системы. Это устройство несет на борту рисованное послание разумным обитателям других миров, которых когда-нибудь, возможно, достигнет. В настоящее время межзвездные перелеты осуществляют, кроме «Пионера-10», несколько других аппаратов, запрограммированных на полет за пределы Солнечной системы: «Пионер-11», «Вояджеры-1 и 2» и «Улисс» (Улисс - латинизированное имя мифического царя Итаки, путешественника Одиссея).
        Разумеется, человек мечтает о гораздо более значительных событиях - о пилотируемых полетах к звездам. К сожалению, они почти неосуществимы. Во-первых, такой полет будет длиться как минимум сотни тысяч лет. До ближайшей к нам звезды Проксимы Центавра полет на максимальной скорости, которую может развить современная космическая ракета (11,2 км/с), затянется на 112,5 тыс. лет.
        Впрочем, теоретически эта проблема разрешима, если погрузить космонавтов в состояние анабиоза. Но значение этого полета для земной науки будет ничтожным, т. к. за 112 тысячелетий добытые звездоплавателями измерения и фотоснимки окажутся малоинформативными.
        Во-вторых, полеты на световой или субсветовой скорости технически невозможны. Теоретически вполне реально сконструировать воспетый фантастами фотонный двигатель, который «сжигает» антивещество и порождает чудовищную тягу. Но летательный аппарат, движущийся на столь большой скорости, немедленно взорвется под действием космических лучей, которые поступают из глубин Галактики и пронизывают космическое пространство насквозь. Для обычной ракеты они не опасны, но для фотонной губительны. Если им навстречу движется на субсветовой скорости какой-то объект, то эти лучи для него уплотняются и превращаются в непробиваемый поток разрушительной энергии. С таким потоком предстоит столкнуться фотонной ракете. Способов защиты от него не существует даже теоретически.
        Тяготение универсально
        В 1609 г. немецкий астроном и математик И. Кеплер издал свой труд «Новая астрономия», в котором обосновал вращение Земли и остальных планет вокруг Солнца. Еще раньше, в 1543 г., это сделал великий польский астроном и врач Н. Коперник, но он не мог найти объяснения некоторым странностям планетных орбит.
        Кеплер справедливо заключил, что планетные орбиты имеют форму немного вытянутого эллипса, оттого движение этих светил на небе представляется земному наблюдателю неправильным.
        Открытие немецкого астронома значительно продвинуло науку вперед и упорядочило систему физических знаний человечества. За формулировку законов обращения светил Кеплеру присудили полушутливый, но торжественно звучащий титул «законодателя неба». Однако астроном не смог ответить на главный вопрос: что заставляет космические тела двигаться вокруг Солнца и почему это движение происходит по столь необычной, замкнутой траектории. Ответ на него был найден спустя более чем полвека гениальным английским физиком И. Ньютоном.
        Закон Всемирного тяготения
        О Ньютоне, как и о любом великом человеке, существует множество удивительных легенд. Говорят, что еще в детстве он проявлял неординарные способности, например, соорудил занимательную игрушку, двигателем которой служило беличье колесо.
        Естественно, никаких книг или журналов «Сделай сам» под рукой у мальчика не было. Говорят также, что маленький Ньютон не любил учиться, но поставил перед собой цель стать первым учеником школы, чтобы превзойти заносчивых отличников. И это мальчику удалось.
        Этому ученому приписывают постройку деревянного моста в Кембридже, собранного без единого гвоздя. Имеются также сведения о том, что Ньютон был крайне рассеян. Как-то раз, например, он, задумав сварить яйцо, опустил в кипяток свои часы.
        Рассеянность гения - явление обычное, т. к. научная работа требует максимальной концентрации и не позволяет отвлекаться на посторонние вещи. Сам физик признавался, что успех в изысканиях возможен лишь тогда, когда ум не занят ничем другим, кроме поиска ответа к поставленной задаче. Насколько сложен был этот поиск, легко судить каждому, кто помнит приемы дифференцирования из школьной программы. Если ученики в школе решают дифференциальные уравнения по готовым формулам, то Ньютон так сделать не мог. Формул в те времена не существовало, равно как и самого дифференцирования. Оно было открыто самим Ньютоном. А решал он свои задачи (бывшие гораздо сложнее школьных) путем геометрических построений и расчетов. Геометрические приемы великого физика, по выражению одного из его биографов, напоминают старинное рыцарское оружие, которое современный человек не в силах ни поднять, ни представить, как с его помощью можно сражаться. Без дифференциальных же уравнений Ньютон никогда не смог бы получить желаемого результата.
        Он измерял связанное с силой ускорение, которое является производной скорости, а скорость представляет собой производную от пройденного расстояния. Точное определение понятию «сила» дал именно Ньютон. Сила - это действие одного тела на другое (пассивное), вызывающее ускорение или деформацию пассивного тела. Если тело под действием силы приобретает ускорение, то оно направлено одинаково с вектором силы. Обе величины тесным образом взаимосвязаны и даже пропорциональны друг другу.
        Интересно в таком случае, какая сила заставляет тела падать на Землю. Эта сила должна быть направлена к центру Земли и сообщать падающим телам одинаковое ускорение свободного падения практически в любом месте планеты. На самом деле, как сейчас достоверно установлено, ускорение свободного падения сильно меняется в зависимости от широты и массы вещества в данном участке планеты. По этой причине земной шар не является идеальным шаром. Он сильно сжат в Северном полушарии, имеет отчасти грушевидную, а отчасти картофелевидную форму, за что называется среди географов не шаром, а геоидом. Впрочем, из-за сходства с картофелиной некоторые предлагают называть форму нашей планеты потатоидом (буквально «картошковидный»).
        Мысли о существовании такой силы зародились у Ньютона, когда ему было 23 года. Если верить дошедшей до нас истории, поводом для столь глубоких мыслей послужило яблоко, которое упало на голову молодому гению во время его отдыха в саду. Четко сформулировать закон всемирного тяготения Ньютон смог, когда занялся астрономией. Сила притяжения наглядно проявляется в космосе, где одни тела обращаются вокруг других.
        Во-первых, причиной столь отчетливой выраженности являются колоссальные массы тел, сопоставимые с массой земли. Два человека притягиваются слабо из-за своей ничтожной массы, тогда как тяжелые планеты обладают колоссальной гравитацией (от латинского gravis - «тяжелый»). В зависимости от массы тело способно развивать определенную силу притяжения и таким образом взаимодействовать с другими телами. Верно ли это суждение? Ньютон попытался найти закономерности в движении Луны по околоземной орбите.
        Луна обращается вокруг нашей планеты под действием силы тяжести, которая направлена к центру планеты. Сила сообщает спутнику ускорение, которое нетрудно замерить астрономическими методами.
        Затем ученый сравнил ускорение Луны с ускорением свободного падения, которое сообщается падающим телам у земной поверхности. Оказалось, что ускорение убывает пропорционально квадрату расстояния, а значит, точно так же ведет себя и сила тяготения. Ньютон задается новым вопросом: как будет двигаться тело под действием силы тяжести, убывающей пропорционально квадрату расстояния?
        Над этим вопросом работал и английский астроном Э. Галлей. Он предположил, что яркие кометы, наблюдаемые учеными вот уже 6 столетий подряд с четким интервалом во времени, - это периодические появления одной и той же кометы. Она находится в Солнечной системе и обращается вокруг Солнца, как и планеты. Ныне этот небесный объект называется кометой Галлея.
        Астроном вычислил, что комета должна двигаться по эллиптической орбите с периодом около 76 лет, однако ничем более доказать свои суждения не смог. Тогда Галлей решил обратиться за помощью к Ньютону, о работах которого случайно услышал. Ньютон к тому времени уже точно знал, что сила, обратно пропорциональная квадрату расстояния, заставляет тело двигаться по эллипсу или подобным фигурам, относящимся к т. н. коническим сечениям. Между учеными завязалась дружба, и впоследствии их исследования во многом дополняли друг друга, что, несомненно, их значительно обогащало.
        Современные астрономы могут точно сказать, что все тела в пределах Солнечной системы движутся по коническим сечениям. Преимущественно орбиты имеют эллиптическую форму, но есть гиперболические и параболические (у комет вблизи Солнца), а также приближенно круговые (у Луны и галилеевых спутников Юпитера). Подтвердилась и другая догадка Ньютона. Он первым предположил, что Вселенная бесконечна, иначе она бы сжалась под действием гравитации в точку. Мир действительно не имеет границ, он беспределен.
        Ньютон утверждал: «Тяготение универсально», т. е. всемирно. Оттого его закон гравитации вошел в физику как закон всемирного тяготения. Если следовать научной строгости, то закон не соблюдается одинаково во всем бесконечном пространстве Вселенной. Но в каждой отдельно взятой точке космоса закон действует безупречно, а сама гравитация распространена повсеместно. Она представляет собой поле, отдаленно напоминающее магнитное. Через это поле массы обмениваются гравитационным взаимодействием и за счет этого взаимно притягиваются.
        Притягивают и притягиваются все физические тела. Яблоко, например, тоже притягивает Землю, а наша планета падает на яблоко. К сожалению, мы не можем наблюдать подобный процесс. И этому существует объяснение. Два тела своими гравитационными полями приводятся в движение, протекающее относительно общего центра масс. Для системы тел Земля - Луна центр масс лежит внутри земного шара. Для Солнечной системы он лежит глубоко в горячих недрах Солнца. Для системы тел Земля - яблоко он находится почти в центре планеты. Туда и стремится попасть яблоко.
        Если бы яблоко и планета имели примерно равные массы и размеры, то оба обращались бы вокруг общего центра масс.
        Они не служили бы фокусом орбиты. Так происходит с двойными звездами. Находясь на поверхности Земли, люди могут видеть лишь действие земного тяготения, собственного притяжения мы не ощущаем. А оно существует.
        Подсчитаем, с какой силой притягиваются два человека. Пусть это будут Дон Жуан и Красавица. Если они стоят в 100 м друг от друга, то величина силы составит 3 на 10^-11^ Н (ньютонов). Для сравнения отметим, что ручная сила, т. е. сила сжатия кисти, 18-летнего юноши равна 485 Н. Будучи в космосе, Дон Жуан приблизился бы к Красавице примерно за 8 с, не прилагая при этом усилий мышц благодаря гравитации. Но на Земле осуществить такой полет никак нельзя, поскольку тяготению между столь малыми массами здесь препятствует сила трения, равная 200 Н. Для преодоления трения Дон Жуану придется совершить мышечную работу.
        Возвращаясь к разговору о Ньютоне, хочется отметить, что, в отличие от многих других ученых, он заслужил признание еще при жизни. На закате дней имя Ньютона было озарено лучами славы, он пользовался заслуженным почетом и уважением со стороны знати, коллег-ученых, простолюдинов. Однако гениальный ученый не испытывал головокружения от неожиданного признания, но скромно объяснял: «Я и видел далеко лишь потому, что, как карлик, стоял на плечах гигантов». Эти слова физика - своего рода дань уважения предшественникам, благодаря научному опыту которых стали возможными и его открытия.
        Важнейшие изобретения баллистики
        Законы, сформулированные Ньютоном, позволяют человеку не только изучать Вселенную на расстоянии, но и разрабатывать технику космических полетов. Чтобы создать аппарат, способный покинуть поле земного тяготения и уйти к другим планетам, требуется сначала рассчитать особенности его движения. Ведь без математики инженеры не смогут узнать о скоростях, ускорениях, нагрузках и энергетических затратах, с которыми предстоит столкнуться проектируемому реактивному снаряду во время намеченного полета.
        Нужно установить, при какой оптимальной массе возможны наилучшие условия старта, наиболее экономичная и целесообразная траектория на том или ином участке полета и т. д. Прикладная физическая дисциплина, занимающаяся вычислениями такого рода и описанием полета реактивных снарядов, носит название космической баллистики. Баллистика вообще представляет собой науку о движении снарядов под действием на них всевозможных сил.
        Баллистика занимается, кроме прочего, изучением полета боевых снарядов. Само название орудия восходит к латинскому слову «баллиста». Так древние римляне окрестили метательное осадное орудие, применявшееся при штурме укрепленных городов. Наиболее простейший вариант, с которым имеют дело современные баллистики, занимающиеся динамикой космических полетов, - это поведение реактивного снаряда в гравитационном поле.
        Задачей ракетной техники является выведение в космическое пространство (на орбиту или межпланетную трассу) летательного аппарата и любого другого тела, которые носят название полезного груза. Полезным грузом может быть все: модуль орбитальной станции, шаттл, искусственный спутник, межпланетный зонд, сами космонавты. Полезный груз, в отличие от самого снаряда, будет выполнять работу вне Земли.
        Масса полезного груза очень велика, поэтому, чтобы вынести его в космос, требуется затратить большое количество энергии. Беспредельно уменьшать массу невозможно, поскольку в этом случае многие технические узлы не станут функционировать. Если же на орбиту отправляется космонавт, то его массу и массу необходимых ему пищи и кислорода невозможно сократить ни при каких условиях. Поэтому перед баллистиками встает проблема стартовой скорости ракеты.
        В течение всего полета двигаться на одной и той же скорости снаряд не может, поскольку нести большую массу, достигающую порядка 10 т минимум, можно лишь при больших запасах энергии. Однако столь внушительное количество топлива само обладает солидной массой. В итоге придется добавлять топливо для перевозки топлива и далее до бесконечности. Возможен ли полет без непрерывных энергетических затрат?
        Вполне! Именно так летит с силой брошенный камень. Человек сообщает ему энергию лишь в момент броска - «старта». В дальнейшем камень летит самостоятельно. Чем большей начальной скоростью он обладает, тем больше у него шансов улететь как можно дальше. Соответственно, ракета также должна стартовать на большой скорости. Чем больше скорость, тем меньше расход топлива и меньше масса снаряда. Следовательно, ракета свободно выйдет на орбиту или даже покинет поле земного тяготения.
        В первом случае, как показывают подсчеты, стартовая скорость снаряда должна равняться второй космической, т. е. 7,91 км/с. По мере возрастания начальной скорости ракета сможет приобретать все более сложную (вытянутую, эллиптическую) околоземную орбиту. Стартовав на скорости 11,19 км/с, снаряд способен беспрепятственно уйти в мировое пространство. Конечно, улететь к Марсу можно и на скорости, равной 7,9 км/с и даже 80 км/ч! Однако запасы топлива потребуются столь значительные, что колосс не пролетит и ничтожной доли пути.
        Первая и вторая космические скорости были достигнуты человеком 4 октября 1957 г. при запуске первого искусственного спутника Земли и 2 января 1959 г. при запуске первой космической ракеты в направлении Луны. Оба аппарата были запущены за пределы земной атмосферы отечественными учеными. Третья космическая скорость в настоящее время не достигнута. Она необходима, чтобы преодолеть притяжение Солнца и покинуть пределы Солнечной системы. Эта скорость равна 16,67 км/с у земной поверхности. Летательные аппараты, ушедшие за пределы Солнечной системы («Пионеры», «Вояджеры»), использовали гравитационные маневры и веньерные двигатели, чтобы выйти из поля солнечной гравитации.
        Заботы баллистиков не ограничиваются изучением брошенных кем-то камней. Ракету при всем желании нельзя отправлять в космос со столь большим ускорением. Реактивный снаряд приобретает необходимую скорость постепенно, поскольку большое ускорение опасно перегрузками, которые не выдержит не только человеческий организм, но и сложная техника. Таким образом, стартовая скорость подбирается весьма скрупулезно. Математически высчитывается участок траектории, на котором необходимо перейти на космическую скорость. Ускорение подбирается с учетом не только перегрузок, но и сопротивления воздуха, которое может составлять свыше 40 т.
        Выход на орбиту является наиболее ответственным этапом полета. Баллистики различают несколько типов выхода, называемых схемами выведения: активный вывод, баллистический вывод и эллиптический вывод. Активный вывод имеет свои преимущества, но он наименее подходящий.
        При такой схеме выведения двигатели должны работать на полную мощность в течение всего полета. Две остальные схемы используют маневры с орбитами (эллиптический) и экономят топливо (баллистический), подключая все мощности двигателей лишь на определенных участках трассы.
        Все относительно
        Чтобы объяснить содержание теории относительности А. Эйнштейна, необходимо дать характеристику инерциальной системы отсчета. Для этого сначала стоит напомнить скандальную историю, случившуюся столетие назад и связанную с высказыванием видного французского математика и физика А. Пуанкаре. Он, известный многими шокирующими заявлениями, однажды высказал в прессе мысль, что планета Земля не вращается… Разумеется, журналисты ничего не поняли и задались вопросом, что же имел в виду Пуанкаре. Земля обращается вокруг Солнца, Солнце - вокруг центра Галактики, Галактика удаляется от остальных звездных систем, но относительно мирового пространства все эти объекты неподвижны. Получается, что Земля, если не принимать в расчет ее космическое окружение, стоит на одном месте. Вот такой оригинальный парадокс. А причиной его служит относительность явлений и процессов.
        Открытие законов относительности
        Все в природе движется относительно чего-то. Одно из тел является точкой отсчета, с которой связана выбранная система координат. Например, спрыгнувшие с самолета одновременно и держащиеся при этом за руки парашютисты движутся относительно самолета и земной поверхности, тогда как относительно друг друга они неподвижны! Система отсчета, принятая для решения большинства задач в механике, связана с Землей. Она кажется нам неподвижной, а сами мы движемся относительно нее.
        Приведенный здесь принцип относительности был сформулирован Галилеем, который утверждал, что в инерциальной системе отсчета нельзя обнаружить какими-либо физическими опытами ее движения.
        Конечно, Земля не является идеальной системой отсчета. Уже древние египтяне, проводя астрономические наблюдения, смутно догадывались, что планета обращается вокруг Солнца. Циклоны, пассатные ветра, искривление течения рек под влиянием кориолисовой силы и ход маятника Фуко свидетельствуют о действительном вращении планеты.
        Тем не менее подавляющее большинство механических опытов, проводимых в системе отсчета, связанной с Землей, не выдают ее космического движения. Вот почему такую систему можно с полным правом считать инерциальной. Из принципа относительности Галилея следует, что любые природные явления - химические, биологические, ядерные, электрические и пр. - протекают во всех инерциальных системах отсчета абсолютно одинаково и подчиняются общим законам. В таком случае результат наблюдений никак не зависит от наблюдателя.
        Отталкиваясь от этих положений, великий немецкий физик А. Эйнштейн разработал в 1905 -1915 гг. свою теорию относительности. Учение Эйнштейна в целом образовано двумя взаимодополняющими теориями - специальной и общей (СТО и ОТО). Эйнштейн выдвинул положение, согласно которому инертные и гравитационные свойства тел эквивалентны. Гравитация и инерция настолько тесно связаны, что образуют неразрывные части единого целого. Другой постулат теории относительности гласит, что скорость света постоянна во всех системах отсчета. Она неизменна и равна 300 000 км/с. Это максимальная скорость передачи взаимодействия в природе.
        Из физики Эйнштейна следуют интересные выводы. Оказывается, физика Ньютона во многих положениях неверна и не может применяться для исследования Вселенной. Классическая механика представляет собой частный случай теории относительности, который допустимо применять лишь с оговорками. Одним из главных отличий ньютоновой и релятивистской (англ. relative - относительный) физик является учение о строении мирового пространства и сущности времени.
        По Ньютону, пространство и время абсолютны и не зависят от материи, которая существует и реализуется в них. Для Эйнштейна пространство-время - единая форма материи, на которую влияет распределение энергии и вещества. Пространство, как сейчас установлено, расширяется, закручиваясь в виде винтовой лестницы вокруг однонаправленной стрелы времени. Это определяет видимое разбегание галактик и необратимость хода физических процессов, в т. ч. и неуклонного роста энтропии.
        Гравитационные поля массивных тел и вещества в целом искривляют пространство. Оно, будучи материальным и зависимым от остальных форм материи, не может существовать без гравитации, его сила действует даже при свободном движении тел, когда прочие силы удается устранить. Вот почему искривленность является естественным и единственно возможным свойством пространства.
        Таким образом, если Ньютон ошибался, то почему его все еще превозносят как великого ученого и не отказываются от его устарелой механики? Причиной тому служит один-единственный факт. Теория относительности дает точность, которая не может быть соблюдена в промышленности, да и не требуется никому. Например, если мы посредством классической формулы для измерения скорости (скорость = путь/время) получим значение, то оно будет отличаться от истинного - полученного посредством релятивистской механики - на ничтожную долю от поперечника атомного ядра.
        Следовательно, погрешность ньютоновой физики настолько мала, что ошибкой можно смело пренебречь при инженерном конструировании. Всякое современное устройство представляет собой совокупность простых машин, объединенных в более сложные системы. А действие всех простых машин подробно описывается законами классической механики. Одним из наиболее любопытных доказательств правоты теории относительности является искривление световых лучей под действием гравитации. Еще Ньютон предупреждал, что световой луч отклоняется в поле тяжести и изменяет свой путь. Релятивистские эффекты вносят существенные поправки в формулы классической теории гравитации, поэтому если ученые смогли бы измерить величину такого отклонения, то сразу стало бы ясным, какая формула справедлива - Ньютона или Эйнштейна.
        Поскольку в лаборатории нельзя поставить соответствующий эксперимент, то на первый взгляд проверка релятивистской механики таким способом невозможна. Однако природа предоставила человеку возможность увидеть искривление лучей, которое имеет место во Вселенной. Космос является областью сверхбольших масс и звездных лучей.
        Первым решил проверить, не отклоняются ли звездные лучи под действием чудовищной гравитации крупных космических объектов, астрофизик А. Эддингтон. Этого человека в шутку называли одним из трех физиков, которые действительно понимают теорию относительности. Эддингтон выбрал для астрономических наблюдений остров Принсипи близ африканского побережья. Здесь в мае 1919 г. можно было наблюдать солнечное затмение. Сияние солнца на время снижалось, и астрономы свободно смогли увидеть звезды, находящиеся близ солнечного диска. В таком случае можно было бы заметить и измерить искривление лучей, идущих от звезды под влиянием солнечного тяготения.
        Подобное искривление представляется наблюдателю как изменение положения звезды на небосводе. Светило будто бы смещается, стремится удалиться от Солнца на большее расстояние. Фотографии звезд у Солнца во время затмения показали, что лучи отклонились на 1,5 секунды дуги, что прямо следовало из формул Эйнштейна.
        Несколько позднее удалось обнаружить гравитационные линзы, существование которых объясняется теорией относительности. Так названы массивные космические тела, которые не только отклоняют световые лучи, но и посредством их строят новое изображение. Сходным образом действуют обычные преломляющие линзовые системы.
        Вероятно, термин «гравитационная линза» появился в 1920-е гг., хотя двойных изображений во Вселенной в то время никто не наблюдал. Только в 1927 г. американский астроном Ф. Цвикки предложил способ поиска построенных изображений. Гравитационными линзами, раздваивающими или размножающими световые лучи от космических тел, могут служить далекие галактики и гипотетические «черные дыры», обладающие фантастической массой. Но, несмотря на столь удачную рабочую гипотезу, впервые «гравитационная линза» была открыта лишь по прошествии 40 лет.
        В конце 1960-х гг. астрономам удалось наблюдать два квазара - радиоисточника большой мощности неизвестной природы - на расстоянии 2500 Мпк от Земли (1 мегапарсек приближенно равен 30,86 на 10^18^ км). Оба квазара были удалены на абсолютно одинаковое расстояние, имели полностью тождественную структуру и спектр излучения. Различий не было никаких, как если бы объекты являлись близнецами. Поскольку столь высокого сходства между двумя удаленными космическими телами быть не может, то оставалось предположить, что перед учеными находится раздвоенное изображение далекого квазара, созданное мощной «гравитационной линзой».
        К такому заключению пришли астрофизики в 1979 г. после 10 лет проверок и дополнительных наблюдений. А спустя некоторое время удалось заметить массивное тело, порождающее иллюзию. Это гигантская галактика, удаленная от Земли на 1 Мпк. Она расположена ближе к Земле и загораживает собой далекий квазар. Зато галактика компенсирует свое вредное действие, искривляя его лучи и перенаправляя их к земному наблюдателю. Ход лучей менялся таким образом, что они как бы обтекали галактику и поступали на Землю с двух позиций. В результате создавались два изображения якобы совершенно разных тел, расположенных далеко друг от друга.
        Самый значительный случай гравитационного линзирования в природе - т. н. крест Эйнштейна. Массивные галактики способны не только раздваивать изображение находящегося позади объекта, но и четырехкратно его размножать. В результате по краю галактики-линзы размещаются 4 мнимых изображения, которые образуют крестообразную фигуру. Сама галактика располагается в центре креста. Один такой крест находится в 2500 Мпк от Земли. Линзирующая галактика находится гораздо ближе - примерно в 120 Мпк.
        Увы, крест Эйнштейна чрезвычайно редко наблюдается, впрочем, равно как и кольца Эйнштейна. Если смотреть сквозь дно стеклянного стакана на дома, то они будут казаться кругообразно искривленными. Сходную картину заметили астрономы в космосе. Гравитационные линзы в особых условиях способны влиять на световые лучи точно так же, как дно стакана. Вот только искривляется при этом изображение не домов, а далеких галактик. В 300 Мпк от нас находится скопление звездных систем, которое своим тяготением искривило свет от более далеких объектов (1500 -2000 Мпк) и превратило его в яркое колечко, окаймляющее это скопление.
        В последние годы ученые все чаще подвергают критике общую и специальную теории относительности, указывая при этом различные недостатки. В роли критиков нередко выступают далекие от науки люди, узнавшие о том, будто бы Эйнштейн в чем-то ошибся и не вникающие в суть споров между физиками. Раздаются даже призывы отбросить релятивистскую физику, поскольку она тормозит науку.
        Конечно, теория относительности принесла немало вреда любителям фантастики, которые увлечены межзвездными перелетами и т. п. Однако учение Эйнштейна построено верно, во многих своих положениях доказано экспериментальным путем, сформулировано четко, строго и гармонично. Один из крупнейших отечественных специалистов в данной области В. Л. Гинсбург справедливо утверждает, что эта физическая теория обладает исключительной глубиной и красотой.
        Но никто не приносит учению так много пользы, как его рьяные противники, если их критика, конечно, обоснована. Нельзя сказать, чтобы ученые, выступающие против СТО и ОТО, строили свои контрверсии на пустом месте. Среди релятивистских учений, идущих вразрез с эйнштейновской физикой, найдется немало надуманных гипотез. Но есть и здравые учения. Среди них следует упомянуть как наиболее удачную и корректную в физическом плане т. н. релятивистскую теорию гравитации (РТГ).
        Автор новой теории гравитации - академик А. А. Логунов, разрабатывавший свое учение на основе релятивистской физики в течение многих лет. Еще в конце 1970-х гг. Логунов выступил с критикой теории Эйнштейна и начал развивать другое релятивистское учение в противовес СТО и ОТО. В 1984 г. РТГ приняла в целом свой нынешний вид, т. е. была окончательно сформулирована как научная теория.
        Один из главных недостатков теории относительности создатель РТГ видит в отсутствии в ней согласования с законами сохранения. Как известно, законы сохранения лежат в основе всей современной физики. Они настолько справедливы и неоднократно доказаны многочисленными экспериментами, что нет оснований сомневаться в их правоте. Отрицать сохранение материи бессмысленно, эти законы незыблемы. А потому они обязательно должны содержаться в теории гравитационного поля, равно как и любого другого.
        ОТО не содержит в себе законов сохранения, она как бы обходится без них, хотя объясняет мировые явления. На первый взгляд учению Эйнштейна нисколько не вредит то обстоятельство, что какие-то вопросы ученый не затрагивает. Однако физическая теория с таким размахом не может себе этого позволить. Ведь при желании, как полагает Логунов, всякий ловкач сможет придумать вечный двигатель. Если перпетуум мобиле первого и второго рода невозможен, то ОТО оставляет шанс для двигателя любого другого рода. Главное, чтобы у изобретателей хватило воображения.
        Релятивистская теория гравитации Логунова полностью отрицает существование «черных дыр», которые беспокоят воображение астрономов, астрофизиков, физиков-теоретиков и, конечно, фантастов. Любопытно, что некоторые ученые после знакомства с загадкой этих гипотетических объектов брались за перо. Например, знаменитый планетолог К. Саган описал в литературно-художественной форме способ межзвездных путешествий через «черные дыры» в удаленные области Вселенной. К слову, такой способ весьма эффективен и не имеет теоретических запретов. «Дыры» вполне могут поглощать материю и выбрасывать ее в другой точке искривленного пространства.
        Таким образом, если бы «черных дыр» не существовало, то их следовало бы выдумать. Одним из косвенных доказательств их наличия (а значит, и правоты Эйнштейна) считаются «гравитационные линзы» и двойные звезды с невидимым карликовым компонентом. Однако непосредственные факты не подтверждают наличия во Вселенной «черных дыр».
        Обнаруженные и хорошо изученные астрономами линзирующие тела оказались галактиками, а массивные звездные спутники - карликовыми звездами (коричневыми и белыми карликами). Коричневые и белые карлики являются в большинстве случаев невидимыми компонентами двойных звезд. Таким образом, существование «дыр» все еще находится под вопросом. Астрономы не имеют возможности утверждать, что предсказанные объекты реальны.
        Вокруг теории относительности по-прежнему ведутся оживленные споры. Но это не должно пугать читателя, поскольку именно в таких спорах и рождается истина. Новые открытия и эксперименты в ближайшем будущем покажут, как в дальнейшем сложится судьба эйнштейновской теории. Возможно, от нее откажутся или захотят исправить, возможно, ее пополнят или определят четкие границы применимости СТО и ОТО, а затем создадут новую теорию, обладающую большим охватом. А учение Эйнштейна будет всего лишь частным случаем в этой теории, как в свое время стала частным случаем в релятивистской физике классическая механика Ньютона.
        Изобретены межпланетные зонды
        Ученые настойчиво пытаются найти способ проверки и перепроверки такой неудобной для многих теории относительности. Слишком ничтожны ее эффекты, чтобы поверить в их существование. Однако для науки в целом и для наших представлений о мироздании в частности слишком важны последствия того, будут ли учтены эти эффекты.
        Но пока ученые настойчиво ищут истину, инженеры пытаются с пользой употребить более или менее достоверные сведения, которыми располагает физическая наука. В учебниках и популярных изданиях теория относительности преподносится в большинстве случаев совершенно неверно. Она представляется учением без недостатков, учением без ограничений в применении и, наконец, учением настолько замечательным, что ему нельзя найти применения в реальной жизни. Это в корне неверно.
        Во-первых, учение Эйнштейна, конечно же, не является безупречным, иначе бы его не критиковали. Во-вторых, оно имеет ограничения, подобно любой физической теории. Астрофизики, например, установили, что сфера применения теории относительности ограничена в науке о космосе эпохой рождения Вселенной. Состояние материи, предшествовавшее становлению мирового вещества, недоступно изучению методами теории относительности. Что находится за пределами сферы применения СТО и ОТО, неизвестно. Судить об этом пока рано.
        Однако такая характеристика нисколько не принижает достоинств учения, но придает ему более конкретный и строгий научный вид. А достоинства СТО и ОТО впечатляют, именно поэтому нельзя считать физику Эйнштейна далекой от нужд и требований реальности. Теория относительности (общая и специальная) - это инженерная наука, на основе которой уже давно ведутся разработки большого практического значения. Специальная теория относительности используется при проектировании и постройке ускорителей заряженных частиц - огромных ядерно-физических лабораторий, где изучаются изначальные свойства материи.
        Общая теория относительности применяется в космической навигации. Поскольку данная глава посвящена изучению и покорению космического пространства с помощью летательных аппаратов, то именно последний случай применения учения Эйнштейна представляет для нас интерес. К Солнечной системе, разумеется, теория относительности мало применима, т. к. релятивистские эффекты здесь ничтожно малы. Они ощутимы только в масштабах нашей Галактики и больших.
        И все же в деле навигации учет небольших цифр бывает очень полезен, поэтому именно так и поступают ученые, занимающиеся расчетом и прокладкой межпланетных трасс для автоматических станций и зондов. Полеты к другим космическим телам стали для современного человека нормой, даже школьники сегодня знают, что полет до Луны занимает по времени 3 суток, до Венеры - 4 месяца, а до Марса - 7 месяцев. Человечество направляло летательные аппараты почти ко всем планетам Солнечной системы, за исключением далекого Плутона. И никто толком не знает, какой титанический труд скрывается за этой исследовательской «рутиной».
        При всем этом проложить межпланетную трассу крайне затруднительно. Средневековый мореход был в праве рассчитывать на благоприятное плавание, если заранее учитывал действие всех ветров и течений на своем пути. Современный баллистик также должен подумать о течениях и ветрах на пути следования космической каравеллы. Вот только водовороты и ураганы, которые поджидают автоматическую станцию, невидимы, неуловимы и непредсказуемы. Речь идет о гравитационных полях, генерируемых планетами и прочими массивными телами, обращающимися вокруг Солнца.
        Само солнце является объектом чудовищно большой массы, и эта масса порождает значительное гравитационное поле. Притяжение различных тел отклоняет летящий в космосе аппарат. Если заранее не учесть всех возможных воздействий, то добиться точности продвижения во время полета невозможно. При прокладке маршрута для межпланетной автоматической станции баллистики опираются преимущественно на построения механики Ньютона, а именно - его теории гравитации.
        Релятивистские эффекты почти не сказываются на дистанциях между планетами, поэтому классической физики для таких вычислений бывает достаточно. Например, так происходит при вычислении гравитационного потенциала. Гравитационным потенциалом называют в теории Ньютона величину, которая соответствует степени напряженности поля тяжести.
        Всем известна напряженность магнитного поля. Наблюдая за металлическими опилками вблизи магнита, можно видеть, как они выстраиваются вдоль силовых линий магнитного поля. Эти силовые линии обозначают направление напряженности поля в пространстве. Напряженность гравитационного поля определяется через гравитационный потенциал. Искусственные спутники с равной силой и притягиваются планетой, и сами притягивают планету, согласно третьему закону Ньютона.
        Поскольку масса и размеры сателлитов не идут ни в какое сравнение с планетными габаритами, то и гравитационное поле этих тел оказывается слабым. Оно почти никак не сказывается на напряженности поля планеты. Принято говорить, что спутник обладает пробной массой, т. е. такой, которая позволяет изучить свойства мощного поля тяжести и не вызвать в нем возмущений. Пробная масса помогает найти гравитационный потенциал поля. Он будет количественно равен квадрату скорости вращения малого тела вокруг большого.
        При релятивистском изучении гравитации физику приходится иметь дело не столько с гравитационным потенциалом, сколько с зависящим от него параметром |?|/c^2^, т. е. модулем потенциала, деленным на квадрат скорости света. Поправка значительна, поскольку скорость света равняется 300 000 км/с! Лишь при большом значении потенциала можно получить достаточно большой параметр. Один из самых больших параметров, встречающихся в природе, характеризует взаимодействия между нейтронными звездами и равняется всего 0,1. Для космического аппарата, совершающего маневры на орбите Марса или Юпитера, параметр просто ничтожен.
        Вот почему баллистики почти не принимают во внимание релятивистские эффекты в Солнечной системе. Но когда речь идет о заходе автоматической станции на околопланетную орбиту, то ученым приходится добиваться высокой точности движения аппарата. Сходным образом наши «Венеры» и американский «Магеллан» стали искусственными спутниками планеты Венера.
        При этом зонду «Магеллан» предстояло выйти сначала на простейшую круговую орбиту, а затем путем баллистического маневрирования перейти на околопланетную эллиптическую орбиту. Двигаясь по эллипсу, зонд то сближался с Венерой и проводил ее картирование, то удалялся от нее и связывался с Землей, передавая собранные данные.
        Во время управления аппаратом при выполнении подобных задач счет ведется на метры, тогда как сам автомат пребывает более чем в сотне миллионов километров от Земли. При таком соотношении расстояний следствия общей теории относительности играют немаловажную роль. Успех многих космических программ связан с внесением поправок ОТО в ньютоновские формулы баллистики.
        Начиная с конца 1990-х гг. специалисты Национального американского агентства по аэронавтике и космическим исследованиям (НАСА) спланировали полет космического зонда к Плутону. Проект был в целом завершен в 1998 -1999 гг., и теперь перед учеными стоит задача его реализации. Полет настолько длителен, что релятивистские эффекты на всем его протяжении дадут о себе знать. По изучению траектории зонда физики смогут в который раз проверить теорию Эйнштейна. Они собираются измерить влияние солнечного тяготения на тело, стремительно удаляющееся от Солнца в бесконечность.
        Недавние открытия убеждают ученых, что релятивистские эффекты придется в обозримом будущем учитывать также при составлении орбит для спутников и орбитальных станций. Выше уже говорилось, что единое четырехмерное пространство-время представляет собой особую форму материи, неразрывно связанную с полем и веществом. Поэтому гравитационные поля могут искривлять пространство, в результате чего оно преображается и приобретает кривизну. Земля не обладает достаточной массой, чтобы сколько-нибудь значительно искривлять пространство. Оттого для исследования всей Солнечной системы справедливо применение евклидовой геометрии.
        Однако Земля вращается вокруг своей оси, чем создает дополнительное воздействие на мировую материю. В процессе такого вращения планета значительно закручивает близлежащее пространство-время. Сходным образом возникают завихрения в креме, который сбивают лопаточки миксера. Вязкая кремовая масса закручивается и как бы наматывается на лопаточки по мере их вращения. Пока невозможно количественно измерить наматывание пространства-времени «на земную ось», т. е. закручивания в виде водоворота вокруг вращающейся планеты.
        Но уже сегодня можно обнаружить данный эффект, поскольку он сказывается на обращении орбитальных искусственных спутников Земли (ИСЗ). Ученые провели анализ орбит двух долговечных сателлитов «Лагеос-I и II» за четырехлетний период. В течение столь длительного срока обращения релятивистские эффекты, вызванные закручиванием пространства-времени в окрестностях планеты, становятся доступны измерению. Необходимо помнить, что пространственно-временные завихрения крайне слабы и возмущают орбиты ИСЗ в 1 млн раз слабее, чем Луна.
        Физики проанализировали элементы орбит и смещение сателлитов «Лагеос». Посредством ньютоновой механики было учтено действие лунной и солнечной гравитации, неоднородность поля тяжести Земли, тормозящее влияние разреженного воздуха, который присутствует вплоть до высот около 10 -15 тыс. км над земной поверхностью. Все эти факторы возмущают орбиты спутников и заставляют сателлиты смещаться. Оказалось, что, помимо указываемых классической физикой, существуют неопознанные факторы, влияющие на околоземные орбиты.
        Очевидно, эти «икс-факторы» являются вышеназванными релятивистскими эффектами. Закручивание пространства-времени вызывает прецессию плоскости спутниковых орбит, иными словами, смещение их плоскости на 2 м за год. Длительные космические программы, осуществление которых на околоземной орбите запланировано на ближайшие несколько лет, не смогут быть успешно реализованы без учета предсказанного Эйнштейном завихрения пространства-времени. Другим примером того, как использовалось учение Эйнштейна в космонавтике, служат реализованные в 1986 г. проекты полета к комете Галлея. Аппарат европейского космического агентства «Джотто» совершил очень сложный маневр и прошел в 1000 км от кометного ядра. Еще более сложный маневр выполнили отечественные аппараты «Вега», которые использовали приобретенное у Венеры ускорение, чтобы достичь кометы Галлея и пройти вблизи ее ядра.
        Как видно, теория относительности уже в наши дни, несмотря на сравнительную неразвитость космической техники, вышла за рамки чистой теории. Это прикладная наука, которая все чаще и чаще применяется при проведении вычислений, связанных с прокладкой космических трасс.

5. Открытия в области оптики
        В древности оптикой называлась наука о зрении. Тогда предполагалось, что из глаз человека исходят некие невидимые лучи, которые ощупывают предметы и тем самым сообщают людям информацию об окружающем мире. Впоследствии оптика тесно сотрудничала с геометрией, архитектурой и живописью, а также другими науками и искусствами, в которых рассматривалось движение лучей и зрительное восприятие человека. Однако со временем позиция ученых переменилась, после того как им удалось доказать, что свет не зависит от зрения, а наоборот - зрение существует благодаря свету. Законы лучей были пересмотрены, и оптика получила второе рождение, став физикой света.
        Преломление и отражение света
        Первым оптическим приспособлением следует считать отражатель, построенный древнегреческим механиком Архимедом из боевых щитов. С помощью такого отражателя ученый, как гласит легенда, сфокусировал солнечные лучи и поджег ими римские корабли, осаждавшие его родной город Сиракузы. Сегодня ученые ставят под сомнение справедливость легенды. Скорее всего, она описывает событие, которое никогда не имело места в действительности. Однако подлинная, лишенная прикрас история оптики ничуть не уменьшает достоинств этой науки. В первую очередь это касается т. н. геометрической оптики, которая позволила создать технику, открывшую перед человеком новые миры - бесконечный космос и микромир.
        Человек открывает законы светового луча
        Некоторые ученые убеждены, что приблизились к разгадке таинственных появлений в старинных замках привидений. Причиной необъяснимого возникновения призраков является устойчивое расслоение воздуха внутри обширных помещений такого рода зданий. Феодальные замки, как известно, невероятно холодны. Их комнаты, слишком высокие и просторные, располагаются таким образом, что неспособны аккумулировать тепло. Воздух внутри помещений замка холоден и тяжел. Камины, однако, давали мощные потоки легкого теплого воздуха. Он не перемешивался с холодным, т. к. система внутренних помещений замка не была на это рассчитана.
        Легкий воздух вытеснялся холодным вверх и скапливался у потолка. Постепенно в комнатах с каминами возникали большие скопления легкого воздуха поверх тяжелого. Происходило сложное вертикальное расслоение воздушных масс, чему способствовали высокие потолки. Так как плотность этих слоев была различна, то получалась настоящая воздушная линза, обладающая за счет своей многослойности еще и зеркальными свойствами.
        Такие линзы отлично отражали свет, попутно искажая его. Достаточно было войти в комнату со свечой, как под потолком возникало размытое отражение ее тусклого света. Появлялось дрожащее призрачное видение. Возможно, кому-то такое объяснение покажется надуманным и далеким от действительности. Что ж, проверить справедливость этой интересной гипотезы можно только опытным путем. Однако сама природа почти каждый день ставит сходные опыты и охотно демонстрирует их людям.
        Речь идет о миражах, в естественном происхождении которых ни у кого не возникает сомнений. Миражи обычны в пустынях, поскольку там земля за день чрезвычайно раскаляется и сильно нагревает прилегающий к ней слой воздуха. Периодически этот легкий слой отрывается и вытесняется вверх более тяжелым холодным. Но это происходит довольно медленно, отчего над пустынями выстраивается целый ряд слоев разной плотности, а приземной воздух обычно оказывается менее плотным.
        В таком толстом зеркале возникают самые причудливые изображения. Как бы то ни было, чаще всего люди видят в пустыне обширные озера с чистейшей пресной водой. Эта иллюзия подкрепляется изнуряющим ощущением жажды. Появление озер неизбежно, потому что над сухими песчаными морями раскинулось знойное голубое небо. Оно чаще всего и отражается в воздушных зеркалах. Отраженную небесную синеву люди принимают за далекое озеро. Миражи в пустынях погубили немало путешественников, доверчиво поддавшихся обману.
        Возникновение миражей и прочие оптические явления, наблюдаемые людьми в природе, тесным образом связаны с физикой лучей света. Световой луч является в известной степени абстрактным понятием, служащим для обозначения направления потока лучистой энергии. Это геометрическая линия, возможно, самая идеальная прямая в природе. Еще древние греки это прекрасно поняли. Они же первыми догадались, что в воздухе свет распространяется прямолинейно, причем лучи идут параллельно друг другу.
        Древнегреческий геометр Евклид первым дал четкую формулировку закону прямолинейного распространения света. Евклид утверждал, что световые лучи, не пересекаясь, движутся по кратчайшему пути, т. е. по самому короткому расстоянию между двумя точками - прямой линии. Этот же ученый впервые сформулировал закон отражения света: угол падения световых лучей равен углу отражения.
        Оба закона, как ни странно, были выведены задолго до Евклида эмпирически, из опыта. Опираясь на эти законы, геометр дал научное объяснение многим оптическим явлениям. Последовательно применяя методы геометрии при восстановлении пути лучей, Евклид заложил основы т. н. геометрической оптики, просуществовавшей почти без изменений вплоть до XVII в. Ключевое положение данной науки - о прямолинейном ходе лучей - верно лишь отчасти.
        На самом деле луч не распространяется прямолинейно ни в одной среде, даже в вакууме. Дело в том, что в космосе на луч влияют силы гравитации, которые отклоняют его от прямой. Впрочем, согласно теории относительности, именно так и должна выглядеть кривая, помещенная в гравитационное поле. Луна вокруг Земли тоже движется по прямой линии - прямой для гравитационного поля. Иного ожидать от гравитации не приходится, поскольку она меняет геометрические свойства пространства.
        Что касается воздуха, то здесь все гораздо проще. В небольшом объеме воздух прозрачен, отчего световые лучи распространяются в нем прямолинейно. Однако атмосфера в целом весьма неоднородна. В одном из разделов второй главы, посвященном давлению воздуха, было подробно рассказано об областях разной плотности в пределах атмосферы. Таким образом, воздушная оболочка планеты многослойна и к тому же постоянно содержит в себе воздушные линзы разной плотности. Оптические свойства атмосферы меняются от места к месту, что и приводит к образованию воздушных «зеркал», порождающих миражи и гало.
        Особое значение для развития оптики имело открытие закона преломления света, которое происходило постепенно, поскольку он не был столь очевиден, как законы прямолинейного движения световых лучей и отражения. Александрийский геометр и астроном Птолемей во II в. до н. э. изобрел диск для измерения угла преломления световых лучей, проходящих из воздуха в воду. Однако установить на основании своих замеров закона преломления Птолемей не сумел.
        Дальнейшие достижения оптики связаны с именем немецкого астронома И. Кеплера. Он попытался сформулировать закон преломления и построил теорию движения световых лучей в оптическом приборе. Кеплер в 1604 г. провозгласил, что каждой точке предмета соответствует только одна точка изображения, которое попадает в глаз наблюдателя. Опираясь на этот принцип, ученый геометрически восстановил ход световых лучей в разных оптических приборах.
        Причем под последними ученый понимал и хрусталик глаза, и линзу, и систему линз, и зеркало. Когда законы построения изображения в оптических приборах были в целом сформулированы, Кеплер разбирает работу зрительных трубок, в частности телескопов. К этим исследованиям он приступает в 1611 г., уже после того, как Галилей провел свои наблюдения.
        Однако предложенный Кеплером телескоп, получивший название трубы Кеплера, оказался гораздо удачнее галилеевой трубы. Попутно немецкий ученый ввел в науку термины «фокус» и «оптическая ось». Отталкиваясь от выводов Кеплера, Снеллиус и Декарт в 1630-х гг. уточнили закон преломления света, завершив тем самым становление науки.
        Благодаря трудам Кеплера были объединены и сформулированы более четко известные прежде законы света, открыты новые законы, создан фундамент для дальнейшего развития оптической науки. Причем теперь оптика развивалась сразу в нескольких направлениях. Прежнее изучение методами геометрии было дополнено экспериментальными исследованиями при помощи линз, зеркал и прочих оптических приборов. А также внутри оптики зародилось прикладное направление, занятое проектированием и расчетом наблюдательных устройств с системой стекол - телескопов и микроскопов.
        Изобретение микроскопа и телескопа
        Первым оптическим прибором был, как ни странно, микроскоп. Его сконструировал в 1590 г. голландский изобретатель З. Янсен. К сожалению, про это открытие надолго забыли. Гораздо больший интерес вызвала оптическая (зрительная) труба. Ее пытался создать еще Л. да Винчи в начале XVI в., но об этих попытках сведений не сохранилось. Поэтому создателем подзорной трубы считается Г. Липперсгейм, который в 1608 г. впервые применил линзы в «волшебной трубке» для наблюдения за удаленными объектами. Это изобретение не прошло незамеченным, оно обратило на себя внимание великого итальянского физика и астронома Г. Галилея.
        Уже в следующем году Галилей собирает собственную, усовершенствованную зрительную трубу и в августе 1609 г. демонстрирует устройство главе Венецианской республики - венецианскому дожу, чтобы заручиться его поддержкой в своих научных изысканиях. Дож счел изобретение полезным для военно-морского флота, а потому дал согласие на дальнейшие работы. Галилей же направляет свою трубку на небо и совершает массу астрономических открытий.
        Поразительные открытия позволяют ученому утверждать, что Земля является рядовой планетой Солнечной системы. Свое творение Галилей именовал по-латыни просто «окуляром». Лишь спустя какое-то время после опубликования Галилеем результатов наблюдений с помощью «окуляра» в «Звездном вестнике» (1610 г.) на свет появилось современное название прибора. Филолог Демесиани нарек зрительную трубу для астрономических исследований телескопом, что в переводе с греческого означает «смотрю в даль».
        Этот первый телескоп был рефрактором, т. е. в переводе с латыни «преломляющим», поскольку его оптическая система состояла из преломляющих световые лучи линз. Выпуклая линза объектива имела диаметр 53 мм и давала 30-кратное увеличение, что на порядок превосходит мощность всех зрительных труб той эпохи. Длина трубы насчитывала 124,5 см. С тех пор конструкция телескопов непрерывно совершенствовалась.
        Основатель современной геометрической оптики, немецкий астроном и математик И. Кеплер усовершенствовал окуляр. Ученый избрал для отверстия окуляра двояковыпуклую линзу, и это в дальнейшем позволило применять телескопическую технику не только и не столько для наблюдений, сколько для измерений. Первый телескоп-рефлектор (дословно «отражатель») с зеркальцем в качестве собирающего свет устройства построил в XVI в. И. Ньютон.
        Что касается микроскопа, то его новым создателем был опять-таки Галилей. Ученый перевернул свою зрительную трубу, а точнее, изменил конструкцию, приспособив ее для наблюдения за малыми объектами. Галилей с увлечением описывал открывшийся ему при увеличении облик мух, блох и прочих насекомых. Но и на сей раз микроскоп никого не заинтересовал, поскольку уровень биологической науки был недостаточно высок, чтобы у ученых-естественников возникла потребность в применении техники. Натуралисты в то время вообще не могли предположить, что же можно изучать в живой природе посредством физических приборов.
        Но проходит немногим более полвека, и ситуация в корне меняется. Английский оптик P. Гук усовершенствовал трехлинзовый микроскоп и с его помощью открыл в 1665 г. существование клеток. В 1675 г. голландский естествоиспытатель А. Левенгук собственными силами создает это замечательное устройство и открывает инфузорию. Впоследствии Левенгук обнаружил немало других занятных «зверьков» (аниманкулов) - разнообразных бактерий. Кроме того, биолог открыл эритроциты (красные кровяные тельца) и сперматозоиды.
        Ученый занимался усовершенствованием микроскопов и всего изготовил порядка 400 моделей. Его творение стало общепризнанным символом биологической науки. Современные оптические микроскопы, применяемые в медицине, микробиологии и прочих биологических науках, являются гораздо более сложными устройствами, обладающими значительным увеличением. Их оптическая система, тем не менее, по-прежнему состоит из окуляра и объектива. Зрительная трубка, несущая в себе линзы, называется тубусом. Тубус крепится на тубусодержателе, устройство которого допускает вертикальные движения тубуса для достижения фокусировки.
        Дальнейшая судьба оптических изобретений удивительна. Самым примечательным событием за всю историю конструирования телескопов следует назвать необычную технологическую конкуренцию между рефлекторами и рефракторами, затянувшуюся вплоть до XX в. Когда в начале XVIII столетия и компактные, и огромные универсальные рефлекторы, казалось бы, полностью потеснили рефракторные телескопы, вскрылись многочисленные недостатки зеркал. Зеркала тускнеют, их изготовление очень дорого, кроме того, стекла часто ломаются под тяжестью собственного веса.
        В начале второй половины XVIII в., после получения в 1758 г. новых сортов стекол, в астрономии наступил период двухлинзовых объективов. Первый из них, т. н. объектив-ахромат, был построен англичанином Дж. Доллондом, отчего многие модели объективов этого типа получили название доллондовых труб. По прошествии некоторого времени рефрактор был усовершенствован немецким астрономом Й. Фраунгофером.
        Фраунгоферовские телескопы в XIX в. становятся главным инструментом астрономов. И только со второй половины XIX в. зеркальные телескопы вновь занимают прежние позиции. Полностью они не вытеснили рефракторы и по сей день, однако являются наиболее значимыми инструментами ученых. Зеркальные системы в наше время главенствуют в науке. Учеными строятся рефлекторы со все большим размером зеркала.
        Самое большое цельное зеркало установлено на телескопе Зеленчукской обсерватории в Ставрополье. Его диаметр составляет 6 м. Гораздо крупнее сборные большие зеркала, составляемые из маленьких. Два телескопа Кека, установленные на Гавайях, представляют собой спаренную оптическую систему и имеют общее на двоих зеркало диаметром 85 м. Истинные размеры зеркал в этой системе составляют всего 1,8 м. Малые зеркала числом 36 объединяются в одно 10-метровое зеркало, установленное на одном телескопе. На втором установлено точно такое же. Расстояние между телескопами равно 85 м. Компьютер объединяет оба телескопа в один с гигантской, 85-метровой базой.
        Сегодня телескопом называют практически любое устройство, предназначенное для приема волновой энергии всех видов из мирового пространства. Если рефлекторы и рефракторы принимают исключительно волны видимого света, то есть телескопы, которые способны принимать ультрафиолетовые, инфракрасные, рентгеновские и радиоволны, а также гамма-лучи. Таким образом, астрономы изучают космос по поступающему из него излучению с любой частотой из всего диапазона.
        Естественно, ультрафиолетовые телескопы или радиотелескопы имеют мало общего в техническом плане с оптическими системами. Однако удобное название прочно закрепилось за устройствами для наблюдения за космическими телами и процессами. Ультрафиолетовые телескопы предназначены главным образом для изучения поверхности Солнца, поскольку оно испускает много ультрафиолета.
        Инфракрасное излучение несет информацию о тепловом режиме на планетах. Оно свободно проходит сквозь планетные атмосферы и представляет собой поток энергии от неодинаково нагретых участков космического тела. Инфракрасные лучи позволяют более результативно изучать колоссальные газовые скопления в мировом пространстве, строение далеких звезд и т. д. Рентгеновские лучи особо информативны при изучении рентгеновских пульсаров и прочих источников этого излучения, гамма-лучи позволяют наблюдать уникальные внегалактические гамма-источники, а радиоволны одинаково хороши для исследования почти всех космических объектов.
        Нужно заметить, что эта упрощенная схема возможностей всеволновой астрономии показывает лишь одно: какие виды волн (излучения) особо информативны и полезны при исследовании тех или иных объектов. В действительности же астрономы никогда не изучают какой-нибудь объект исключительно одним типом волн. Почти каждое небесное тело рассматривается и в радиоволнах, и в ультрафиолетовом диапазоне, и в инфракрасном диапазоне, и в «рентгене», а иногда даже в гамма-лучах.
        Волновая и лазерная оптика
        Современная оптика есть не что иное, как совокупность дисциплин, тесно взаимосвязанных друг с другом и одновременно совершенно различных. Объединяют эти дисциплины лишь предмет изучения (свет) и фундаментальные законы физики света. Отрасль оптики, изучающая самые общие свойства светового луча, получила название геометрической оптики. Ее сегодня дополняют волновая, молекулярная, волоконная, нелинейная отрасли оптики и многие другие. Причиной недостаточности единственно геометрической оптики для описания всех свойств света послужило то, что он проявляет себя двояко, т. е. в виде волн и потока частиц сразу.
        Теория корпускулярно-волнового дуализма
        Еще античные атомисты, такие как Демокрит, Эпикур и Лукреций, догадывались, что свет представляет собой поток частиц, которые достигают человеческого глаза и оставляют в нем отпечаток предметов окружающего мира. Аристотель полагал, что свет есть движение, распространяющееся само по себе в пространстве. Тем самым эти философы отказывались от традиционных представлений о природе световых лучей и заложили фундамент двух физических теорий - корпускулярной и волновой. Эти теории вновь возродились в XVII в., когда ученые попытались объяснить оптические явления.
        Французский математик и философ P. Декарт разрабатывает волновую теорию света. Согласно его представлениям, свет есть волны, расходящиеся в упругой тонкой среде, заполняющей пространство между телами, - эфире. Декарт не верил в существование пустоты, поэтому прибегнул к эфиру для объяснения физики света. Многие другие ученые придерживались мнения, что свет есть поток частиц. В пустом пространстве, как верили физики этого направления, витают атомы вещества и световые частицы.
        Итальянский астроном Ф. Гримальди известен тем, что вел наблюдения за Луной и дал названия 300 объектам на ее поверхности. Двести селенонимов из предложенных им прижились, оказавшись красивыми и очень удачными. Это весьма романтические названия: Море Дождей, Море Кризиса, Море Нектара, Океан Бурь и пр. В физике Гримальди сделал великое открытие, опытным путем доказав волновую природу света.
        Астроном, по роду занятий вынужденный много времени отводить на изучение оптики, ставил в начале 1660-х гг. нехитрые эксперименты. Он помещал на пути очень узкого светового пучка предмет. Обычно каждый предмет отбрасывает тень, но в данном случае она была неотчетливой, как если бы свет волнами огибал объект и сходился позади последнего. Ученый присвоил обнаруженному явлению название дифракции, однако не стал спешить с опровержением корпускулярной теории света.
        Придерживавшийся данной теории И. Ньютон примерно в это же время провел ставший знаменитым опыт по разложению света на спектр. Ученый пропустил пучок белого света через призму и направил этот луч на экран. Луч распался на семь цветов, выстроившиеся в экране в виде полоски - спектра. Повторив опыт с одноцветным световым пучком, Ньютон не вызвал его разложения на составные части. Пройдя через призму, луч остался одноцветным. Физик пришел к выводу, что белый свет сложный и состоит из частиц семи расцветок.
        Одноцветные (монохроматические) лучи простые и образованы только одним родом частиц. Призма отклоняет световые частицы на разный угол в строгой зависимости от цвета последних. Тем самым великий физик убедительно подтвердил справедливость корпускулярной теории. Ньютон провозгласил, что для каждого отдельного цвета величина преломления строго задана и всегда остается неизменной. А значит, неизменны и элементарны световые частицы-корпускулы, подобные в своем постоянстве неделимым атомам вещества. Однако здесь физик ошибался, о чем будет подробнее рассказано ниже.
        P. Гук попытался оспорить точку зрения Ньютона, однако так и не смог дать приемлемого объяснения разложению света на спектр. Тем не менее Ньютон внимательно изучил работу Гука и, согласившись со многими доводами своего оппонента, пришел к неожиданному заключению. Свет имеет двойную природу и способен вести себя в разных условиях как поток частиц и как волны эфира. Таким образом, великий англичанин стал первым ученым, провозгласившим корпускулярно-волновой дуализм. К сожалению, об этом надолго забыли.
        В XVII столетии Гюйгенс настойчиво разрабатывал волновую теорию, которую связал с законами геометрической оптики. В конце XVIII в. Т. Юнг обнаруживает явление интерференции света, которое объясняется только волновыми свойствами света. С этим оптическим явлением каждый из нас сталкивается всякий раз, когда видит разноцветные разводы от бензина, покрывающего пленкой поверхность лужи. Солнечные лучи отражаются и от бензиновой пленки и от поверхности воды. В результате возникают два перекрывающих друг друга отраженных световых потока. Поскольку свет представляет собой волны, то их перекрывание создает замысловатый узор, который мы воспринимаем как радужные разводы.
        В 1864 г. Дж. Максвелл приходит к выводу об электромагнитной природе света. Свет - это волновые колебания электромагнитного поля, заполняющего пространство. Только частота колебаний и, как следствие, длина волны видимого излучения отличают его от прочих видов электромагнитных волн. В остальном радиоволны, инфракрасные (ИК) волны, ультрафиолет (УФ волны), рентгеновские и гамма-лучи родственны видимому свету. То, что они не воспринимаются нашим зрением, объясняется чисто биологическими причинами.
        Эволюция вела высших теплокровных животных к умению пользоваться главным каналом оптической информации - световым. Инфракрасные волны передаются сравнительно хуже и сообщают только о нагретых объектах, ультрафиолет поступает лишь от Солнца и поглощается веществом. Жесткие лучи (гамма- и рентгеновские) редко встречаются в природе, т. к. они зарождаются далеко в космосе и гасятся земной атмосферой, не достигая поверхности нашей планеты. Вот почему жесткое излучение интересует среди нефизиков почти единственно астрономов.
        Но и они вынуждены признать, что свет несет куда больше информации о звездах и галактиках, чем прочие виды электромагнитного излучения. Именно поэтому самый большой космический телескоп «Хаббл», запущенный на орбиту в 1990 г., работает в оптическом диапазоне. Свет информативен, живым существам, включая и человека, выгоднее воспринимать этот вид волн.
        Эффекты, связанные с корпускулярными свойствами света, долгое время оставались необъясненными. Лишь в начале XX в. А. Эйнштейн создал теорию корпускулярно-волнового дуализма, в которой объединил на основе новейших научных представлений все проявления двойственной природы излучения. Свет действительно распространяется волнами, но при этом сохраняет способность квантоваться, т. е. делиться на энергетические порции (кванты), ведущие себя как элементарные частицы. Эти частицы получили название фотонов.
        С позиций новой теории света легко доказать, в чем состояла ошибка Ньютона, полагавшего, что преломление цветов неизменно. Угол преломления зависит от частоты, которая напрямую связана с энергией фотонов и одновременно определяет длину световой волны. Частота же меняется в силу разных причин, отчего в спектре может происходить смещение. Известно, к примеру, что фотоны излучения сверхмассивных звезд меняют свою частоту. Чтобы преодолеть гравитационное поле светила, им приходится затрачивать колоссальную энергию, а это немедленно сказывается на частоте.
        Другим случаем изменения частоты световых волн является т. н. эффект Допплера. Они распространяются со скоростью 300 000 км/с. Если источник света движется, то волны смещаются относительно друг друга. Одна отстает от предшествующей или, напротив, стремится опередить ее. Соответственно меняется в большую или меньшую сторону длина волны. Поскольку источники света в большинстве случаев движутся на ничтожно малых скоростях в сравнении со световой, то заметных изменений длины волны не происходит. Зато если источник обладает субсветовой скоростью, то его излучение меняет свой истинный цвет.
        В 1929 г. американский астрофизик Э. Хаббл, в честь которого назван вышеупомянутый крупный орбитальный телескоп, открыл красное смещение в спектрах галактик. На основании своего открытия ученый пришел к выводу о разбегании галактик. Вселенная расширяется, и звездные системы стремительно разлетаются друг от друга. В каждой точке мирового пространства наблюдателю откроется одинаковая картина - удаляющиеся галактики.
        Астрономия способна преподносить и другие сюрпризы. Скажем, в 1978 г. в созвездии Водолея астрономы открыли странный объект. И сейчас трудно сказать, является ли он звездой или далекой галактикой. Известный под номером 88 433, он имеет в своем спектре линии смещения в красной и фиолетовой области. А это надлежит понимать так, что космическое тело одновременно приближается к нашей планете и удаляется от нее.
        Скорость загадочного объекта равняется, судя по величине смещения длины волн, 80 000 км/с, т. е. 0,27с (0,27 скорости света). Возможное объяснение феномена следующее. Объект выбрасывает в мировое пространство газовые струи, движущиеся на колоссальной скорости. Одна струя направлена к Земле, другая летит в противоположную сторону. Отсюда двойное смещение в спектре удивительного космического тела.
        Лазерные технологии
        Открытие двойственной природы света позволило физикам прийти к идее создания оптического квантового генератора. В 1954 -1955 гг. отечественными учеными Г. Н. Басовым и А. М. Прохоровым, канадским специалистом Дж. Вебером и американскими физиками Ч. Таусоном, X. Цайгером и Дж. Гордоном был разработан первый мазер, иначе, молекулярный квантовый генератор. Это устройство, предназначенное для генерации и усиления сверхвысокочастотных радиоволн (СВЧ-радиоволн).
        Поскольку радиоволны являются наряду с видимым светом разновидностью электромагнитных колебаний, то физики сразу после создания молекулярных генераторов задумались о возможности создавать вынужденное излучение в оптическом диапазоне. В природе вещество очень часто излучает свет. От нагрева светится спираль лампы накаливания, в лесу мигают огоньки гнилушек, испускают в темноте холодное люминесцентное свечение вещества, побывавшие долгое время под прямыми солнечными лучами.
        Причиной такого излучения является самопроизвольное испускание световых квантов возбужденными атомами вещества. Среди атомов любого физического тела есть т. н. энергетически возбужденные частицы. Эти атомы обладают избыточной энергией, от которой со временем избавляются путем испускания фотонов. Генератор оптических колебаний, следовательно, должен быть построен по тому же принципу. То есть он должен содержать вещество, активные атомы которого будут служить источником излучения.
        Однако генератор не может самопроизвольно излучать видимый свет так, как это делает гнилушка. Ученым требовался постоянный мощный источник колебаний. В обычной системе частиц преобладают атомы с низкой энергией. Чтобы И вещество непрерывно светилось, в нем, наоборот, должны преобладать возбужденные частицы. Такую систему, называемую активной, можно получить при помощи электромагнитного поля.
        Искусственное энергетическое возбуждение атомов, носящее название индуцированного, т. е. наведенного, приводит к еще одному выгодному последствию. Самопроизвольное излучение становится не только усиленным, но и когерентным. Обычное свечение гнилушки некогерентно, стало быть, фазы световых колебаний и направления движения фотонов не согласованы. Когерентное излучение отличается согласованием и по фазе, и по направлению. Дальнейшее изучение поведения фотонов и свойств активной среды показало пути к созданию оптических генераторов.
        Если в активную среду попадает фотон, то он заставляет возбужденные атомы вокруг него светиться. Они выделяют энергию в виде световых квантов и переходят, таким образом, в свое обычное состояние. Причем выделяющиеся фотоны по направлению и свойствам подобны своему прародителю. Если поместить активную среду между двумя плоскими параллельными зеркалами, то такие фотоны станут многократно отражаться и переотражаться, а в результате по нескольку раз пересекут активную среду. Они, в свою очередь, вызовут излучение других атомов.
        В веществе начнется лавинообразный процесс образования одинаковых фотонов. Возникающее в ходе данного процесса излучение называется стимулированным. Одно из плоских зеркал делают полупрозрачным, чтобы стимулированное и усиленное излучение выходило из активной среды в виде тонкого луча. Генератор порождает световой луч, обладающий массой достоинств и уникальных характеристик.
        Во-первых, выходящее из активной среды излучение отличается ничтожно малой конусностью, другими словами - малым углом расхождения. Всякий видел, как расширяется луч прожектора, превращаясь в конус. Стимулированное излучение расходится слабо, луч напоминает по форме острейшую иглу, толщина которой равняется зачастую долям микрометра. Если направить такой луч на Луну, то он высветит на ее поверхности окружность диаметром 4 м. Трудно вообразить себе световой конус с диаметром основания 4 м и высотой 384 тыс. км!
        Благодаря своей «игольчатости», как образно называют ученые особенность излучения, оно максимально концентрирует в себе энергию и обладает заданной частотой и фазой. Теоретическое обоснование работы квантовых генераторов было одновременно осуществлено Басовым и Таунсом независимо друг от друга. В 1960 г. американским ученым Т. Мейманом был построен первый квантовый генератор, активной средой которого служил синтетический рубин.
        Физическое явление, на котором основаны принципы работы установки, по-английски называется light amplification by stimulated emission of radiation, что переводится как усиление световых волн путем стимулированного излучения. По начальным буквам слов, входящих в состав этого названия, оптический квантовый генератор окрестили на Западе лазером. Позднее это короткое и удобное название прижилось и в нашей стране.
        Большой интерес к лазерам со стороны обывателей объясняется в немалой степени стараниями фантастов. У ученых же интерес особый. Специалистов самых разных направлений привлекают невероятные возможности применения лазерного луча в научных исследованиях и промышленности. Справедливо будет заметить, что лазеры изменили оптику, обогатив ее новыми знаниями и новыми методами исследования свойств света.
        Лазерный луч и его общие свойства изучает т. н. когерентная оптика, представляющая собой новое направление в волновой оптике, смежное с квантовой оптикой. Лазеры, помогая физикам проникать в тайны материи, привели к открытиям, заложившим основы множества других оптических дисциплин.
        Из когерентной оптики выросла оптика нелинейная. Она изучает воздействие видимых электромагнитных волн и фотонов на вещество. Прежде ученые не могли с уверенностью сказать, влияет ли свет на среду, сквозь которую проходят его лучи, а если влияет, то как. В наше время нелинейная оптика дает однозначный ответ на этот вопрос. Концентрированная энергия лазера позволяет воздействовать на атомы и молекулы среды столь интенсивно, что эффект от такого воздействия заметен и может быть без особых проблем измерен.
        Голография занимается созданием и воспроизведением при помощи лазеров объемных световых изображений. Трехмерные изображения необходимы для демонстрации схем, макетов, моделей, каких-либо структур, а также для научных исследований. Многие физические процессы и особенности анатомии человека исследуются в наше время на голографических картинках.
        Перспективна радиооптика, которая занимает проблемами кодирования и переноса в лазерном луче информации. Впоследствии оптическая информация может быть переведена в электрические импульсы. На рубеже 1980 -1990-х гг. удалось впервые заложить технические основы лазерной связи и оптического кодирования информации. Тогда же были созданы первые экспериментальные лазерные телесистемы и лазерные чипы для ЭВМ. Совмещение электронных устройств с оптическими, затронутое радиооптикой, изучает оптоэлектроника.
        Исправлением искажений светового пучка, проходящего через какую-то среду (газ, жидкость), занимается адаптивная оптика. Фотоэнергетика занимается проблемами передачи энергии в световой форме. Лазерный луч концентрирует и переносит большое количество энергии. Космические энергетические станции могут использовать энергию Солнца, превращать ее в лазерные лучи и направлять на Землю, на орбитальные станции и космические корабли, а в будущем - на Луну и другие планеты.
        Посредством лазерного луча можно передавать тепловую энергию на ракету, заправленную экологически чистым топливом. Масса ракеты станет от этого гораздо легче, т. к. значительное количество энергии будет непрерывно поступать с лазерных установок на космодроме. Это в будущем, а пока энергия лазера применяется при сварке и резке металлов, а также при обработке многих других материалов когерентным лучом. Возможности и перспективы применения квантовых генераторов в народном хозяйстве исследуются прикладной дисциплиной - лазерной техникой.
        Лазер легко генерирует вспышки, длящиеся несколько пикосекунд, т. е. несколько миллиардных долей секунды! Такие вспышки позволяют исследовать быстро протекающие процессы во время химических и биохимических реакций. Данное направление исследований получило название пикосекундной оптики. Оно оказалось весьма перспективным при изучении химизма живой материи, реакций в тканях и клетках растений, животных и микроорганизмов.
        Открытие с помощью квантовых генераторов молекулярных механизмов фотосинтеза и прочие ошеломляющие открытия способствовали появлению фотобиологии - науки, находящейся на стыке когерентной оптики, пикосекундной оптики и биологии. Посредством лазеров сегодня выполняются экспериментальные операции на вирусах и микробах, вызываются химические реакции белков и ферментов, ускоряются процессы в клетках, удаляются хромосомы и отдельные гены.
        Многие фирмы и промышленные предприятия во всем мире сегодня пользуются лазерной сигнализацией. Каждому прекрасно известны подобные системы безопасности, устанавливаемые в крупных музеях. Принципиальная схема лазерной сигнализации предельно проста. Охранная система сконструирована с учетом того, что световой луч совершенно невидим. Дело в том, что свет - источник и первопричина нашего зрения - абсолютно невидим до тех пор, пока не попадет к нам в глаз, орган зрения. Если луч не направлен прямо в глаз человеку, то увидеть такой луч совершенно невозможно.
        Что касается солнечных лучей в комнате, то они видны благодаря тем самым пылинкам, которые движутся в теплом потоке света. Пыли в воздухе всегда так много, что она отражает световые лучи и не дает им двигаться прямолинейно. Основной поток солнечного света проходит сквозь пространство комнаты по прямой. Однако на всем протяжении пучка лучей от него исходят отраженные витающей в воздухе пылью лучики, идущие на глазное дно наблюдателя.
        Лазерный луч малой мощности настолько тонок, что он задевает крайне мало пылинок и не вызывает их свечения. Поэтому когерентный луч незаметен человеку. Квантовый генератор направляет излучение на фотоэлемент, установленный на участке электрической цепи сигнализации. Энергия фотонов преобразуется в электрическую, и цепь замыкается: через фотоэлемент течет ток. Если что-то или кто-то (грабитель) пересекает луч, то фотоэлемент перестает работать и участок цепи разрывается. Ток поступает на динамик сигнализации. Увидеть лазерный луч позволяют аэрозольные частицы, размеры которых в 1000 раз меньше размеров пылинок.
        Пользователям персональных ЭВМ известны и другие примеры широкого применения лазерных технологий в повседневной жизни. Успех компакт-дисков в промышленности аудиотехники привел к тому, что сегодня СБ прослушиваются зачастую на компьютерах. Более того, в последнее время СБ еще и просматриваются, поскольку способны хранить на себе фотографические и рисованные изображения. Компакт-диски для хранения и просмотра фотографий появились в 1992 г.
        С 1997 г. появились диски БУБ, обладающие емкостью, в 7 раз превосходящей емкость обыкновенных СБ! Это позволило записывать на БУБ видеофильмы и большие игры. Чтение таких дисков осуществляется посредством лазера, встроенного в компьютер. Это маломощный лазерный светодиод, который дает луч с большой конусностью и длиной волны 760 нм. Фокусировка луча осуществляется посредством системы малых линз.
        Луч поступает на поверхность диска, отражается от нанесенных на нее бороздок, подобных таковым на грампластинке, и поступает на матрицу из фотоэлементов, где оптическая информация превращается в электрический сигнал, который идет на специальную большую интегральную схему. Остается заметить, что устройства СБ-ШЭМ современного типа появились около 10 лет назад.
        Наконец, следует напомнить о лазерных принтерах, которые во многом превосходят все остальные типы печатных устройств. Качество печати современных лазерных принтеров приближается к фотографическому, кроме того, эти устройства издают мало шума при работе. Лазерный луч в данных устройствах принимает участие в создании матрицы изображения. Лазер меняет точечные заряды на поверхности барабана, который с их помощью притягивает к себе частицы краски, а потом переносит их на бумагу. Взаимное расположение точечных зарядов разной величины складывает картинку, которую воссоздает прилипающая к барабану краска.
        За последние три года наметилась тенденция снижения цен на этот некогда очень дорогой товар, что делает лазерный принтер доступным для каждого пользователя персонального компьютера. В полиграфии применяется аналог лазерного принтера - фотонаборный аппарат. Это устройство, обладающее несравнимо более высоким качеством печати, создает изображение, воздействуя лазерным лучом на фотопластинку или фотобумагу.
        Загадки зрения
        Хотя оптика, о чем рассказывалось выше, давно перестала изучать исключительно зрение, одно из направлений этой науки - физиологическая оптика - по-прежнему занимается физическими аспектами световосприятия. Глаз, учитывая сложность его устройства, допустимо рассматривать в качестве миниатюрной оптической системы. Хрусталик глаза преломляет световые лучи, фокусируя их на сетчатку. Он обладает оптической силой. Зрачок глаза меняет величину в зависимости от освещенности, являющейся физической характеристикой светового потока и выражаемой в люксах.
        Открытие дисперсии света
        Первооткрывателем явления дисперсии света является Ньютон, а под самой дисперсией понимается разложение сложного света на простые составляющие, т. е. на спектр. Об экспериментах великого физика, в которых он посредством призмы доказывал «элементарность» монохромных (одноцветных) лучей и многокомпонентность белого света, уже говорилось в этой книге. Нужно заметить, что Ньютон не первым открыл разложение света, ученые давно обратили на это явление внимание, наблюдая за радугой, преломлением света в хрустале и т. д. Но только ему удалось объяснить сущность физического явления.
        Современное объяснение дисперсии основывается на представлениях о двойственной, корпускулярно-волновой природе видимого излучения. Дисперсией называется зависимость скорости света в веществе от длины волны. Проходя через прозрачное или полупрозрачное вещество (газ, жидкость, стекло, пленку), одноцветный луч испытывает преломление, потому что его скорость в новой среде меняется. Причем чем больше сократится скорость, тем сильнее преломится луч. Красные лучи почти не преломляются, зато фиолетовые отклоняются очень существенно.
        Белый свет является комплексным излучением, он образован смешением всех спектральных цветов. Монохромные лучи в составе белого света замедляются веществом (призмой) неодинаково, что приводит к разложению светового потока. Красный луч почти не испытывает преломления, зато остальные лучи отклоняются от него все дальше и дальше. Больше всего отклоняется от красного фиолетовый луч. Поскольку после неодинакового преломления лучи уже не могут смешаться и воссоздать белый цвет, то они приобретают вид радуги-спектра.
        Мало кто знает, сколько же действительно цветов увидел Ньютон во время своего эксперимента. Согласно иллюстрациям к работам великого физика, он наблюдал ровно семь цветов спектра: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый. Парадоксально, однако знаменитый англичанин не видел семи цветов. Он их просто выдумал. Если рассуждать строго научно, то спектр разделим лишь на три области - красную, желто-зеленую и сине-фиолетовую. Человек в состоянии различить в радужной полоске пять чистых цветов - красный, желтый, зеленый, голубой и фиолетовый. Если говорить о промежуточных (переходных) оттенках, то их существует 4: оранжевый, желто-зеленый, зелено-голубой и синий. Таким образом, Ньютон мог выделить в линии спектра либо 3 главных области, либо 5 основных, чистых цветов, либо 9 цветовых оттенков вообще - 5 основных цветов и 4 переходных.
        Ответ на этот вопрос содержится в исторической работе Ньютона под названием «Оптика», где ученый признается, что увидел 5 чистых цветов. Он рассказывает о своих наблюдениях следующее: «Спектр оказался окрашенным и притом так, что часть наименее преломленная была красною; верхняя же, наиболее преломленная часть у конца была окрашена в фиолетовый цвет. Пространство между этими крайними цветами имело желтую, зеленую и голубую окраску». Физик ввел в науку представление о несуществующих семи цветах спектра, неосознанно подчинись вере в магию числа 7.
        Эта вера восходит к астрологии древних халдеев, которые свыше 4000 лет назад поклонялись 7 блуждающим светилам небосвода - Солнцу, Луне, Меркурию, Венере, Марсу, Юпитеру и Сатурну. По числу светил была поделена неделя, которую некогда так и называли на Руси - «седмица». Шесть трудовых дней и седьмой день отдыха приближенно совпадали с биоритмом работоспособности человека, а потому получили мистическое истолкование. Как говорится, даже Бог отдыхал в седьмой день.
        Библейское «число зверя», в котором зашифровано имя императора Нерона, составлено из трех шестерок, являющихся неполными семерками. В средние века алхимики знали 7 металлов, музыканты придумали 7 нот. Следует предположить, что Ньютон последовал красивой и загадочной традиции.
        Изобретение цветного телевизора
        В современной жизни телевизор является не только и не столько предметом для развлечения, сколько ценнейшим источником информации. Выпуски новостей, прогноз погоды, спортивное обозрение, познавательные передачи, ток-шоу, выступления политиков, документальные фильмы и многое другое дарит людям телевидение.
        Кроме привычных возможностей, телевидение в наши дни располагает еще и функцией телетекста. Основным же достоинством телевизора и его несомненным преимуществом перед радио является прием изображения.
        Человек может не только слышать, но и видеть. Зрительно мы воспринимаем до 90 % информации об окружающем мире, а потому ее передача через картинку на экране более эффективна. Создание изображения на экране - сложный технический процесс. Рабочая часть телевизора, с которой непосредственно имеет дело зритель, называется электронно-лучевой трубкой, или кинескопом.
        Это вакуумная лампа, принимающая на себя ток под высоким напряжением. Поскольку ток является направленным движением заряженных частиц - электронов, то они внутри трубки превращаются в бегущий луч. Под действием магнитов отклоняющей системы луч колеблется влево-вправо, пробегая по экрану. Эта часть кинескопа изнутри покрыт веществом люминофором, которое вспыхивает под влиянием электронного луча. Если луч очертит на люминофоре какой-то образ, то на экране появится светящееся изображение. Оно будет держаться до тех пор, пока луч обегает все точки этого изображения.
        Предшественником телевизора является катодная трубка, благодаря которой Дж. Дж. Томсон открыл существование электрона. В этой трубке также был установлен покрытый люминофором экран, на который попадал электронный луч, отклонявшийся под действием магнитных полей, создаваемых специальными магнитами. Сейчас в обыкновенном телевизоре такие магниты управляются блоками строчной и кадровой разверток.
        Поскольку управлять потоком электронов в вакууме тогда никто не умел, то катодная трубка Томсона была крайне примитивной и не годилась для создания телевизионного изображения. Однако Томсон в своем устройстве использовал, в чем нетрудно убедиться, все классические принципы создания телевизионного изображения. Электронный луч создавался на катоде кинескопа посредством термоэлектронной эмиссии, открытой Т. А. Эдисоном.
        Явление термоэлектронной эмиссии сводится к интенсивному испусканию электронов металлом при нагреве. Катод электронно-лучевой трубки сильно нагревается под действием тока, оттого электроны активно срываются с него и быстро приобретают нужную скорость. Их поток движется в трубке со скоростью 70 000 км/с. Вообще, свободные электроны способны перемещаться в пространстве со скоростью света, т. е. 300 000 км/с. Но отклоняющая система своими магнитными полями существенно тормозит движение частиц.
        Создание телевизионной техники приходится на 1940-е гг., когда американским инженером Зворыкиным, русским по происхождению, был сконструирован иконоскоп. Он представляет собой трубку наоборот, т. е. не для показа изображения, но для его передачи. Экран иконоскопа покрыт мозаичным слоем из фотоэлементов весьма малых размеров. По этому слою пробегает электронный луч, обеспечивающий контакт фотоэлементов с усилителем сигнала.
        Когда на экран проецируется кинематографическое изображение, оно превращается фотоэлементами в импульсы тока, преобразуемые усилителем. Впоследствии такие сигналы передавались по радио на волнах метрового диапазона. Их приемником служил телевизор, представлявший собой видоизмененный иконоскоп. В настоящее время телевизионный тракт включает в себя массу устройств, начиная от объектива кинокамеры и заканчивая выходом кодирующего устройства в телеприемнике.
        Телевидение тесно связано с электричеством, магнетизмом и радиосвязью, поскольку базируется на принципах этих отраслей физики. Оптика же объясняет физические закономерности восприятия зрительной информации и обосновывает ключевые позиции техники формирования телевизионного изображения. Если бы оптика не открыла удивительных особенностей нашего глаза, то люди никогда бы не смогли создать телевизор.
        Поэтому величайшая заслуга в изобретении этого устройства принадлежит в первую очередь оптической науке. Оптики установили, что зрение человека обладает несколькими особенностями: инерционностью, ограниченной разрешающей способностью по угловому расстоянию и перемещениям, одинаковой разрешающей способностью по угловому расстоянию. Инерционность зрения позволяет воспроизводить на телеэкране изображение, разбив его на элементы. То есть последовательность быстро сменяющихся картинок воспринимается нами как одна картинка.
        Воспроизведение на экране движущихся предметов на сменяющихся картинках осуществляется путем подачи компонентов движения. Изменение положения объектов изображается поэлементно - в виде отдельных подвижек. Ограничивающая разрешающая способность зрения по перемещениям создает у телезрителя иллюзию пластичности движений. Ограничивающая разрешающая способность по угловому расстоянию сводится к тому, что глаза не различают далеко расположенные предметы. Если угловое расстояние между любыми двумя объектами меньше 1 с, то оба воспринимаются как один предмет.
        Одинаковая разрешающая способность заключается в независимости остроты глаза от направления зрения. Оба вида разрешающей способности позволяют подобрать ограниченную полосу частот телесигнала. Под частотами понимаются горизонтальная частота строк изображения и вертикальная частота кадров. Они задаются строчной и кадровой развертками (горизонтальной и вертикальной, как их иногда называют).
        Заголовок раздела обещает дать объяснение принципов работы цветного телевизора. Внимание цветному телевидению уделено не случайно. Во-первых, конечно, черно-белые экраны сейчас безвозвратно уходят в прошлое. Во-вторых, и это самое главное, заслуги оптики в данном случае более очевидны. Не сразу техники догадались, как сделать картинку цветной. Человек воспринимает 500 000 цветов и оттенков. Все это богатство красок нельзя превратить в один-единственный слой люминофора. Ответ пришел от нейрофизиологов и, разумеется, оптиков, которые сообща открыли физико-химический механизм цветовосприятия.
        Вклад оптиков был решающим, поскольку существование разных цветов объясняется разными длинами волн и, соответственно, различными частотами светового излучения. Человек способен видеть только три цвета, тогда как остальные не воспринимает. Об этом впервые догадался великий русский ученый М. В. Ломоносов. Сегодня известно, что человеческое зрение работает по особому принципу.
        Ранее сообщалось, что, хотя свет и распространяется в виде волн, поглощается он минимальными порциями - квантами. Точно так же вода в реках движется в виде волн, но вот пить ее можно лишь порциями - стаканами, бутылками, кружками и т. д. Каждая световая порция обладает какой-то энергией, зависящей от частоты излучения.
        Поскольку частота связана с длиной волны, то получается, что энергия порций светового потока связана с длиной волны. Попадая в глаз, кванты света вызывают там химические реакции, которые приводят к появлению у человека цветоощущения. Дно глазного яблока выстлано тканью, называемой сетчаткой. Она содержит светочувствительные клетки - колбочки и палочки. Расположенные в центральной части сетчатки колбочки насчитывают 7 млн штук. Они бывают трех типов, отличающихся один от другого по виду содержащегося в них светочувствительного фермента.
        В клетках одного типа - определенный фермент из группы родопсинов. В колбочках других типов такого фермента нет, там находятся совершенно иные родопсины. Каждый родопсин способен реагировать только при попадании на него светового кванта с определенной энергией. Колбочки с родопсином, реагирующим на энергию красного излучения, возбуждаются под влиянием волны длиной 760 -620 нм. Их нервное возбуждение передается в сборники информации - базальные клетки, откуда сигнал через разные виды клеток-«посредников» поступает в головной мозг. Там уже возникает ощущение красного цвета.
        Если же на колбочки попадают волны из желтой части спектра, то их энергия возбуждает в некотором соотношении колбочки, «видящие» красный и зеленый цвета. «Синие» колбочки остаются совершенно безучастными. На ганглиозные клетки поступает смешанная информация, что приводит к возникновению нового светового ощущения. В зависимости от соотношения «красных» и «зеленых» колбочек в мозгу формируется той или иной интенсивности желтый цвет.
        Понятно, что предельно точное цветовосприятие глазом такого строения невозможно, т. к. соотношение разных типов колбочек для одной и той же длины волны не всегда и не для всех одинаково. Оттого способность различать цвета развита у каждого по-своему. Кто-то способен назвать переданный на картине изумрудный оттенок светло-зеленым, а кто-то аквамариновым.
        Не следует все же относиться к человеческому зрению с осуждением. Наше неточное цветовосприятие превосходит по совершенству цветное зрение большинства живых существ, не говоря уже об оптической технике. Глаз является самым универсальным инструментом, когда речь идет о распознавании цветов.
        Быть может, человек не всегда сумеет выразить словами разницу между антрацитовым, пепельно-черным, иссиня-черным и бархатно-черным оттенками, зато сможет эту разницу увидеть.
        Экран цветного кинескопа телевизора или компьютерного дисплея покрыт точками (зернами) зеленого, красного и синего люминофора. Во время передачи цветного изображения люминофор под бомбардировкой электронным пучком испускает зеленое, красное и синее свечение. В зависимости от сочетания основных цветов методом аддитивного смешения у зрителя создается ощущение появления нового цвета или оттенка.
        Скажем, луч бомбардирует электронами ближайшие точки экрана, расположенные по три, - красное, синее и зеленое зерна. Одни точки светятся красным, другие синим, а не различающий отдельных точек телезритель воспринимает световой сигнал как фиолетовый. Зеленый сигнал подается слабым и не влияет на изображение. Нужно заметить, что получение нужного оттенка зависит не столько от количества точек, сколько от интенсивности основных цветов.
        Количество же позволяет придать цветному участку угловые размеры, необходимые для отчетливого его восприятия. Близко расположенные цветные детали сливаются и зрительно окрашиваются в общий, пространственно усредненный оттенок. Слияние всех основных цветов при одинаковой интенсивности дает ровный белый цвет. На катоде цветного кинескопа расположены три электронно-лучевые пушки, управляемые обособленными системами. Каждая пушка направляет луч только на определенные зерна люминофора: либо красные, либо синие, либо зеленые.
        Корректирует направление лучей установленная в трубке пластиновидная теневая маска из инвара - сплава из 64 % железа и 36 % никеля. Инвар менее всех остальных металлов и сплавов меняет линейные размеры при колебаниях температуры среды. В теневой маске проделаны малые отверстия, соответствующие зернам люминофора. В некоторых теневых масках проделаны щели, заменяющие систему отверстий. Такие маски называют уже не масками, а апертурными решетками.

6. Агрегатные состояния вещества
        Создавая свое учение о первоэлементах, слагающих все тела мира, древние греки совершенно верно указали на то, что в природе существует лишь четыре основных агрегатных состояния вещества. Четырем первоэлементам - земле, воде, воздуху и огню - соответствуют твердое, жидкое, газообразное и плазменное состояния. То есть интуиция великих мыслителей античности не подвела.
        Естественно, в ту пору они не могли догадываться, что помимо этих агрегатных состояний в природе существуют и другие. Одно из них - это состояние полной нейтронизации вещества, характерное для далеких звезд-пульсаров. В земных условиях вещество в данном состоянии пребывать не может. Зато может находиться в состоянии, промежуточном между основными.
        Аморфное состояние
        Промежуточные состояния немногочисленны, но крайне интересны. Внешне вещество, пребывающее в таком состоянии, напоминает какое-нибудь обычное твердое тело или жидкость, однако по своим свойствам и молекулярному строению не является ни тем, ни другим. Наиболее интересно аморфное состояние, пребывающие в котором тела внешне нередко напоминают кристаллы. На самом же деле нет ничего более фальшивого, чем эти кристаллы. Истинное кристаллическое вещество имеет четко упорядоченную структуру, тогда как внутри аморфных веществ царит полнейший хаос. Отсюда происходит и само слово «аморфный», означающее в переводе с греческого «бесформенный».
        Открытие природы стекла
        Согласно древней легенде, первооткрывателями аморфного состояния являются якобы безвестные финикийские или греческие торговцы. Сделав во время одного из своих многочисленных плаваний остановку на острове, они устроили большой костер на берегу. Песок от высокого жара расплавился и превратился в стекловидную массу.
        В античности стекло не нашло существенного применения, даже зеркала тогда изготавливались преимущественно из металла. Но в последующие эпохи стекла стали применяться все чаще и чаще. В средние века получило широкое распространение использование цветной стеклянной мозаики для украшения окон в храмах.
        Позднее Средневековье и начало Нового времени ознаменованы распространением стеклодувного производства. Разработкой технологий получения цветных стекол занимался М. В. Ломоносов. Открытие особой природы стекла состоялось лишь в XX в., когда ученые во всем мире стали проводить крупномасштабные исследования атомарной и молекулярной структуры разных веществ посредством рентгеновских лучей. Длина волны таких лучей настолько мала, что они легко высвечивают крайне малые элементы строения вещества, включая молекулы, узлы кристаллической решетки, атомарные комплексы и отдельные атомы.
        Выяснилось, что твердые физические тела обладают строго упорядоченным строением, причем оно остается практически неизменным во всех частях тела. То есть кристаллическая решетка, в которую выстроены атомы или молекулы твердого тела, неизменна в любой своей точке. Определенные узлы, комплексы или любые другие значимые структурные группы повторяются через некоторый пространственный интервал. Такое строение физического тела называется дальним порядком.
        В жидкостях дальний порядок полностью отсутствует, зато существует ближний порядок, который и обеспечивает их вязкость. Ближний порядок означает наличие слабо связанных друг с другом молекулярных комплексов. Внутри комплекса частицы сравнительно упорядочены, но сами комплексы размещаются в пространстве хаотически. Сходным строением обладают аморфные тела, или стекла. Их нельзя отнести к твердым или жидким телам. Если соблюдать точность, они даже не занимают промежуточного положения между ними.
        Стекла являются промежуточным состоянием между твердым телом и газом, от жидкостей их отличает лишь крайне высокая плотность. Из-за этого аморфные тела внешне проявляют почти все существенные признаки твердых, хотя атомы внутри этих тел не занимают строго определенного положения. Таким образом, стекла никогда не образуют многогранных кристаллов. Название «стекло» было присвоено аморфным телам не случайно. Получить данное агрегатное состояние для какого-либо другого вещества, кроме стекла, довольно-таки трудно. В природе можно встретить тектиты, происхождение которых связывают с падением на нашу планету метеоритных тел, и вулканическое стекло. Тектиты представляют собой твердые каплевидные шарики темного цвета, которые находят в породах на всех континентах, за исключением Южной Америки. Во время падения метеоритного объекта грунт, в который врезается космическое тело, подвергается мощному ударному воздействию. В результате происходит взрыв раскаленного метеорита, и на земле образуется воронка-астроблем, называемая метеоритным кратером.
        Астроблемы имеют форму чаши, а сверху выглядят кольцевыми структурами. Во время взрыва грунт внутри кратера разрушается и частично оплавляется, после чего оказывается выброшенным с высокой скоростью в небо. Постепенно дожди и ветра разрушают следы астроблема, а сами тектиты оказываются похороненными под слоем песков и прочего обломочного материала. Иногда они сохраняются на поверхности, причем в большом количестве.
        В Австралии слезовидные тектиты, возраст которых датируется 600 тыс. лет, удается найти даже в желудках страусов эму, а также в гнездах шалашников, которые обожают собирать разнообразные блестящие предметы. Австралийские камни-капли относятся к семейству сравнительно молодых тектитов, к которым причисляются также найденные на Яве и Филиппинских островах. Гораздо древнее группа молдавитов, обнаруженных в Восточной Европе, главным образом в Чехии. Их возраст равняется 14,8 млн лет. Возраст же техасских тектитов насчитывает 30 млн лет.
        Оплавленная масса грунта, образующая под действием взрывной волны капельки-тектиты, во время застывания превращается в стекло, а точнее, переходит в аморфоподобное состояние. Вулканическое стекло возникает при застывании лавовой массы, исторгнутой из недр вулкана. Нередко оно несет на себе следы двойного оплавления. Повторно стекло оплавляется тогда, когда поверх застывшей лавы течет новый раскаленный поток, плавящий подстилающее его вещество. Так возникает аморфоподобная масса.
        Все прочие виды аморфных и аморфоподобных веществ, известных науке, были получены человеком. Таким образом, к моменту открытия данного агрегатного состояния наука располагала подробными сведениями о свойствах главным образом одного лишь стекла. И уже после глубокого изучения строения стекла стало возможным получение в лабораториях и на производстве новых видов аморфных тел, также названных стеклами.
        Получить аморфное тело можно не из каждого вещества. Больше всего подходят для этой цели расплавы с высокой вязкостью, причем чем выше вязкость жидкости, тем выше вероятность получения из последней стекла. Условием образования аморфной массы является чрезвычайно быстрое охлаждение жидкости. При плавном охлаждении избыточная тепловая энергия уходит в окружающую среду поэтапно, что позволяет хаотическим молекулам жидкости выстроиться в кристаллическую структуру. В веществе возникает дальний порядок одновременно с возрастанием вязкости, и оно становится твердым телом.
        Если же скорость оттока тепловой энергии высока, то вязкость вещества увеличивается задолго до того, как между молекулами установится дальний порядок. Структура охлажденного вещества по-прежнему остается неправильной или почти неправильной, тогда как вязкость резко отличается от таковой, свойственной жидкостям. Тело переходит в новое агрегатное состояние, аморфное.
        Изобретаются новые стекла
        Сегодня разработаны технологии получения различных видов аморфных веществ, в первую очередь настоящих стекол. Несмотря на низкую в сравнении с твердокристаллическими телами вязкость, аморфные вещества обладают массой выгодных преимуществ, которых полностью лишены первые. Во-первых, к числу неоспоримых достоинств стекол следует отнести отсутствие дефектов строения.
        Строго упорядоченная структура кристалла в некоторых своих участках имеет неизбежные нарушения. Это т. н. отклонения (дефекты) во внутреннем строении. Они возникают при возникновении твердого тела, при внешних воздействиях на него и при обработке. Иногда такие дефекты оказываются очень серьезны. Аморфные тела свободны от внутренних дефектов, потому что их строение хаотическое, близкое к таковому у жидкостей. То есть атомы друг относительно друга не упорядочены, а потому отклонений в их системе быть не может.
        Более того, стекла внутренне однородны, тогда как в кристаллах существуют определенные направления и оси, существование которых обусловлено наличием у молекул или атомов какой-либо предпочтительной ориентации. Из этих двух ценных качеств прямо следуют прочие достоинства. Стекла прозрачны для электромагнитного излучения во всех диапазонах, а потому применяются при производстве светопроводящих стекловолокон, кинескопов и т. д.
        Эти вещества не пропускают электрический ток и могут использоваться в качестве изоляционных материалов. Стеклянные изоляторы устанавливаются на высоковольтных линиях электропередачи. Впрочем, нужно заметить, что обыкновенное стекло приобретает электропроводные свойства при нагревании. Наконец, аморфные материалы прочны, долговечны, химически стойки. Последнее их качество позволило широко использовать стеклянную посуду в лабораториях.
        Сегодня аморфные вещества претерпели значительные изменения. Стеклосмазки никак не похожи на лабораторную посуду, но по внутреннему строению материал в обоих случаях одинаков. Помимо настоящих стекол и материалов на их основе, сегодня получают металлические стекла. Правильнее их называть аморфными металлическими сплавами (АМС). Ранее сообщалось, что вещество переходит в агрегатное состояние при быстром охлаждении, когда вязкость нарастает быстрее, чем успевает установиться кристаллический порядок.
        Если простое стекло самостоятельно приобретает аморфную структуру при остывании на воздухе, то другие вещества и материалы приходится остужать искусственным путем, в специальных условиях. Точно таким же образом удается из вязкого расплава получать аморфные металлы. К сожалению, превратить в стекло чистый металл технически невозможно. Зато некоторые сплавы переходят в аморфное состояние при быстром охлаждении.
        Скорость такого охлаждения чудовищно высока. Она достигает порядка 1 млн °С в секунду. Естественно, процесс длится считанные доли секунды, поскольку иначе бы конечная температура сплава упала ниже абсолютного нуля, а это невозможно. Изготовление АМС невероятно сложно, однако эти материалы привлекают своими замечательными качествами. Такие сплавы почти не имеют магнитных потерь, а потому применяются в производстве трансформаторов, записывающих головок видео- и аудиотехники.
        Жидкокристаллическое состояние
        Все знают, что генетический код человека и прочих живых существ закодирован в последовательности атомов молекулы ДНК (подробнее о наследственности и генетике рассказано в главе 9). Но мало кто подозревает, что ДНК имеет что-то общее с плоским телевизором, с индикатором от часов, с устройствами визуализации в термометрии, термографии, медицине, технике отображения электронной информации или, наконец, с «перстнем настроения», который показывает, какое настроение у его хозяйки. И тем не менее все перечисленные устройства работают на материалах, которые, подобно ДНК, пребывают в жидкокристаллическом состоянии.
        Открыты жидкие твердые тела
        Удивительно, но биологи и химики принесли физике немало пользы, хотя единство всех наук было фактически признано лишь в начале XX в. И лишь за последние 50 лет ученые убедились в плодотворности сотрудничества специалистов из разных областей знания. Наиболее впечатляющие (001 открытия почти всегда совершались на стыке совершенно различных наук. Так получилось и на сей раз. Честь открытия жидких кристаллов принадлежит австрийскому ботанику Рейнитцеру. В 1888 г. он проводил исследования нового сложного соединения, которое сам же синтезировал, - холестерилбензоата.
        Это вещество существовало в нормальных условиях в кристаллической форме и плавилось только при высоких температурах. Вот здесь-то и заключался главный парадокс. Стоило нагреть кристаллики до +145 °C, как вещество немедленно плавилось. Однако дальнейший нагрев жидкости приводил к еще более удивительным превращениям. Мутная и вязкая, обладающая высоким рассеянием световых лучей, она полностью преображалась при температуре +179 °C. Стоило ботанику настолько подогреть жидкость, как она становилась прозрачной и водянистой на вид.
        Промежуточное состояние между кристаллическим и нормальным жидким получило в дальнейшем название мутной фазы. Заинтригованный Рейнитцер провел исследование мутной фазы под микроскопом, в результате чего выявил двойное лучепреломление вещества. При этом двупреломления не наблюдалось в обычной жидкости холестерилбензоата, да и не могло наблюдаться. Ведь оно является свойством, присущим настоящим кристаллическим телам. Данный эффект возникает благодаря строгой ориентации молекул вещества, вызывающей поляризацию световых волн - их предпочтительное движение в заданной плоскости относительно т. н. оптической оси кристалла.
        Ботаник не догадался о совершенном им открытии, но предположил, что в мутной жидкости оставались мелкие нерасплавившиеся кристаллики, не различимые под микроскопом. Лишь дальнейшие исследования необычной фазы, проведенные в прошлом столетии, позволили развеять все сомнения. Выяснилось, что научный мир столкнулся с новым агрегатным состоянием вещества, промежуточным между жидким и твердокристаллическим.
        Жидкокристаллическая фаза свойственна далеко не всем веществам, но только органическим соединениям, характеризующимся крупными и массивными молекулами со структурой высокой степени сложности. Фаза приходится на небольшой интервал температур от температуры плавления настоящего кристалла до температуры перехода вещества в настоящую жидкость. Жидкий кристалл текуч и легко принимает форму сосуда.
        Одновременно он обладает упорядоченным молекулярным строением: его частицы строго выстроены относительно друг друга и демонстрируют свойство определенной пространственной ориентации. На первый взгляд такое невозможно, поскольку порядок подразумевает наличие кристаллической решетки. Это устойчивая система, в узлах которой расположены центры масс молекул. Она жестко связывает молекулы и тем самым не допускает текучести вещества.
        Откуда взялись противоположные качества у одного вещества? Дело в том, что жидкие кристаллы полностью лишены кристаллической решетки. Их порядок строгий, но не жесткий. Закрепления в определенных точках относительно друг друга не происходит, отчего в некоторых областях кристалла наблюдается небольшой беспорядок. Он-то и обеспечивает свойство текучести жидкого тела. Вместе с тем предпочтительная ориентация молекул обусловливает типично кристаллическую характеристику веществ в данном агрегатном состоянии, каковой является анизотропия.
        Под анизотропией в физике понимается разделение физических свойств по направлениям. То есть физические свойства проявляют себя в одном направлении и не проявляют или проявляют иначе в другом. Таким образом, внутри всякого кристаллического тела есть предпочтительное направление свойств упругости, диэлектрической проницаемости, электропроводности, оптических свойств и др. Жидкие кристаллы анизотропны, равно как и настоящие твердые тела.
        Вместе с тем уникальное агрегатное состояние обладает качествами, не типичными для остальных фаз вещества. В первую очередь обращает на себя внимание зависимость оптических свойств жидких кристаллов от условий окружающей среды.
        Ученые различают несколько типов структурной организации жидких кристаллов: нематические кристаллы, смектические, холестерические и дискотические. Кристаллы с соответствующим строением называются нематиками, смектиками, холестериками и дискотиками, причем первые представляют собой наиболее простой по строению тип веществ данной фазы. Дискотики обладают молекулами в форме дисков, а остальные имеют молекулы-стержни.
        Жидкокристаллическую фазу всегда образуют только сравнительно плотные вещества с компактно уложенными крупными молекулами дисковидной или стержневидной формы. На то есть несколько причин, в основе которых лежит такое обыкновенное межмолекулярное взаимодействие. Молекулы, о чем сообщают школьникам на первых уроках физики, притягиваются и отталкиваются. Силы притяжения имеют электромагнитную природу. Они заставляют частицы вещества сближаться, а силы отталкивания препятствуют взаимному проникновению молекул.
        При высокой концентрации крупных молекул со сложной формой - стержней или дисков - они начинают за счет сил отталкивания мешать друг другу свободно двигаться. Дисковидная молекула не может, к примеру, встать на ребро, а стержневидная не может произвольно повернуться поперек. Все частицы принимают примерно однонаправленное расположение. Таким образом, форма молекул задает их пространственную ориентацию.
        Различают два способа образования жидких кристаллов. Прежде всего вещество в это агрегатное состояние можно перевести с помощью нагревания. Именно так получил мутную фазу холестерилбензоата Рейнитцер. Если продлить нагревание жидкокристаллической фазы, то энергия молекул возрастет и они станут двигаться гораздо быстрее. Постепенно беспорядочное тепловое движение станет преобладать, в результате чего кристалл перейдет в жидкое состояние. Принято говорить, что кристалл плавится. При застывании расплава образуется обычный твердый кристалл.
        Плотность жидкого кристалла может быть очень низкой, близкой к плотности жидкости. Но есть и плотные тела, подобные по консистенции пасте. Такие жидкие кристаллы называют термотропными. Кроме них, различают лиотропные жидкие кристаллы, которые образуются при растворении какого-либо вещества в другом. Растворяемое вещество называется мезогеном, потому что сама фаза называется еще мезоморфной.
        Типичными лиотропными кристаллами являются биологические мембраны. Мембрана представляет собой молекулярную стенку, отделяющую живое вещество клеток от окружающей среды. Она сложена двумя слоями липидных молекул, т. е. имеет толщину порядка 10 нм максимум. При этом длина волны зеленого излучения в 50 раз больше! Настолько хрупка грань между живым и неживым. Липиды представляют собой мезоген, который образует двухслойную структуру мембраны при взаимодействии с жидкой средой клетки.
        Изобретается техника на жидких кристаллах
        Холестерические кристаллы используются для изготовления пластинчатых термометров для грубого определения температуры. В настоящее время спрос на эти изделия несколько снизился, зато лет 10 назад подобные устройства были весьма популярны, особенно среди школьников. Дети имели при себе пластинки, которые было удобно носить на одежде.
        Пока температура тела нормальная, пластинка высвечивает букву «N», с которой начинается слово Normal (temperature). При повышении температуры выше нормы пластинка меняет цвет и высвечивает букву «F», с которой начинается слово Fever - жар. Как только ребенок замечает появление этой буквы, он обращается к родителям, и те уже измеряют ему температуру с помощью обычного градусника.
        Технической новинкой являются плоские телевизионные и компьютерные экраны на жидких кристаллах. Эти удобные средства отображения информации настолько основательно вошли в нашу жизнь, что большинство людей поддалось иллюзии, будто бы жидкокристаллическим мониторам много десятков лет. На самом деле сооружение первых экспериментальных моделей LCD-устройств (англ. Liquid Crystal Displays - жидкокристаллические дисплеи, или ЖК-дисплеи) началось лишь в середине 1980-х.
        Первые образцы продукции для массового покупателя появились в конце 1980-х. Распространение телевизоров на жидких кристаллах и персональных компьютеров «лэптоп» приходится на 1989 -1991 гг. Первые большие цветные телеэкраны (диагональ 35 см и более) стали собираться лишь начиная с 1991 г., и то единственным их производителем тогда была японская фирма «Шарп».
        Экран LCD собран из стеклянных пластин, уложенных слоями, перемежающимися с прослойками жидкого кристалла. Оптическая структура последнего меняется в зависимости от величины электрического заряда, поступающего на кристалл. Электроника телеприемника или компьютера генерирует электромагнитное поле, в котором молекулы кристалла меняют свою пространственную ориентацию. В результате меняются направления оптических осей кристаллов, и разные области экрана по-разному отражают свет и строят тем самым изображение.
        Поскольку сами жидкие кристаллы светиться не могут, то для работы устройств LCD приходится применять подсветку, которая устанавливается в телевизорах и компьютерах. Подсветка необходима даже для работы в дневное время. Солнечный свет в течение суток падает на экран под разными углами и неоднократно меняет мощность. Поэтому картинка на жидкокристаллическом дисплее будет изменчивой и далекой от истинной. Впрочем, начиная с конца 1990-х гг. ведутся успешные разработки мониторов, в которых кристаллы меняют цвет в электрическом поле, а также «активных» (самосветящихся) LCD-устройств.
        Единственным недостатком самых ранних ЖК-дисплеев было высокое сопротивление жидкокристаллической среды. Скорость частиц обладающего большой вязкостью жидкого кристалла невелика. Получая новый электрический импульс, кристаллы затрачивали порядка 500 мс (миллисекунд) на переориентацию. Ограничение скорости кристаллов экрана привело к невозможности полноценно работать операторам со средствами ввода информации типа «мышь». Курсор «мыши» при быстром передвижении по экрану нередко попросту пропадал из виду, т. к. реакция кристаллов запаздывала.
        В настоящее время помеха устранена благодаря внедрению двух технологий - DSTN и TFT. Первая технология сводится к использованию особого рода кристаллов-нематиков и двойного сканирования. Не так давно эта технология пополнилась методом многолинейной адресации MLA, сократившей замедление реакции экрана до 50 мс. Еще более продвинутой является предложенная фирмой «Тошиба» технология TFT, которая практически полностью сокращает запаздывание. Использование плоского дисплея с технологией TFT позволяет владельцу компьютера не испытывать затруднений во время т. н. «динамичных» компьютерных игр и т. д.
        Пользователь LCD-устройства или плоского телевизора должен знать, что качество изображения во многом зависит от угла зрения. Жидкокристаллические экраны сконструированы таким образом, чтобы на них смотрели под прямым углом. Только тогда зритель может рассчитывать на высококачественное изображение. Если плоские компьютерные мониторы удобны своей компактностью, что позволяет устанавливать их на переносные ПК, то жидкокристаллические телевизоры весьма удобны в другом отношении: они не занимают много места и могут быть даже повешены на стену вместо картины. Большинство марок плоских телевизоров, между прочим, способно работать в режиме показа картинки, когда не настроено на прием радиосигнала. К слову, сейчас в продаже имеются настоящие «движущиеся картины», которые изображают слегка меняющиеся пейзажи. Представляющие собой экран на жидких кристаллах, такие картины воспроизводят бег облаков, дрожание листвы на ветру, течение воды в роднике или водопаде и т. п. Нужно заметить, что еще недавно на эти картины мало кто обращал внимание, считая их забавной игрушкой, а сегодня многие спешат приобрести
переменчивые пейзажи.
        И последнее замечание, которое касается плоских экранов. Обычно принято считать, что любой плоский экран построен на жидких кристаллах. Если в отношении современных персональных ЭВМ это в целом верно, то плоские экраны телевизоров могут быть конструированы с использованием многих других материалов. Преимущественно в роли таких аналогов выступают электролюминесцентные элементы и цветные светодиоды. Однако жидкие кристаллы занимают, безусловно, главенствующее положение.
        Четвертое состояние
        Подавляющее большинство веществ не образует стекол или жидких кристаллов. Почти все известные науке химические соединения, за редким исключением, способны существовать лишь в трех агрегатных состояниях - твердом, жидком и газообразном. При очень высоких температурах, не встречающихся на Земле в естественных условиях, практически любое вещество можно перевести в плазменное состояние. Однако молекулы вещества окажутся полностью разрушены. В чем же заключается плазменное состояние материи, сокращенно называемое плазмой?
        Открытие плазмы
        Плазма - значительно ионизированный газ, который по своим физическим свойствам резко отличается от обыкновенного, нейтрального газа. В природных условиях у поверхности Земли невозможно наблюдать плазму ни в какой ее форме, поскольку ионизационные процессы в воздухе очень слабы. Приземный воздух насыщен разнообразными ионами, причем для человека наиболее важны катионы (отрицательно заряженные молекулы), поскольку именно они поддерживают наше дыхание.
        Естественно, избыточные электроны появляются у атома лишь потому, что их потерял другой атом. Процесс утраты электронов атомом, называемый ионизацией, приводит к образованию плазмы. Но если сравнить воздух с настоящей плазмой, то окажется, что нас окружает в целом нейтральная газовая смесь. Число катионов и анионов, называемых в совокупности аэроионами, ничтожно, а главное - слишком мала степень их ионизации.
        Степень ионизации как величина означает количество электронов, утерянных ранее нейтральным атомом. Степень ионизации - очень важная физическая величина, потому что она может рассказать о свойствах плазмы и ее разновидностях. Во время грозовых разрядов, случающихся на нашей планете по 8 млн раз в день, на короткое время у земной поверхности рождается самая настоящая плазма с очень высокой температурой и большой степенью ионизации. В канале молнии (стримере) течет поток ионов, представляющих собой атомарные кислород и водород, и противоположный ему поток свободных электронов.
        Напряжение, вызывающее разряд, равно 300 000 В, а сила тока достигает 1 А. Температура газов в канале молнии равна +27 тыс. °С. Этого вполне достаточно, чтобы вызывать кратковременные термоядерные реакции. В частности, во время примерно 1,24 % всех грозовых разрядов рождаются в ходе таких реакций потоки элементарных частиц нейтрино. Но постоянно такая плазма существовать не может, она быстро разрушается.
        Человек научился создавать плазму самостоятельно. Ионизированный искусственным путем газ можно найти сейчас в каждой рекламной трубке. Неоновое газоразрядное свечение очень слабо ионизирует газ, ионы в нем холодны и движутся медленно. Зато электроны под действием постоянного напряжения разогреваются и разгоняются до больших скоростей.
        Температура электронов в рекламной трубке достигает +10 000 °C, во что трудно поверить. Однако они действительно настолько горячи, вот только не способны передать свою тепловую энергию окружающим атомам. Электроны существуют совершенно независимо от ионов, образуя т. н. электронный газ. Вообще, настоящая плазма всегда представляет собой смесь из двух независимых газов - ионного и электронного.
        На большой высоте над земной поверхностью царят подходящие условия для длительного существования слабо ионизированной низкотемпературной плазмы. Здесь происходят естественные процессы фотоионизации молекул воздуха под действием ультрафиолетового излучения Солнца. Слой этой плазмы, начинающийся на высоте около 60 км, получил название ионосферы. Ионосферой обладают и другие планеты Солнечной системы.
        При слабой ионизации заряженные частицы составляют лишь 1 % от общей плотности плазмы. Космос является миром газа, подвергшегося более значительной ионизации. Громадными скоплениями такого газа оказались сильно разреженные туманности, сложенные продуктами взрывов сверхновых и т. д. Высокотемпературная сильно ионизированная плазма существует на горячих поверхностях звезд. Температура солнечной поверхности сравнительно холодна, она равняется +6000 °C. Существуют и более низкие звездные температуры - много менее +3000 °C. Самые горячие звезды, светила т. н. бело-голубого класса, нагреты до +20 000 °C и более.
        Человек способен получать температуры, сопоставимые с теми, что царят в недрах звезд. В начале 1950-х гг. П. Л. Капица установил, при каких условиях в плотном газе под действием мощного разряда рождается плазменный шнур. Сегодня этот эффект используется в установках типа «ТОКАМАК», предназначенных для ядерно-физических экспериментов. Здесь плазменный тор нагревается до нескольких десятков миллионов градусов!
        Применение плазмы - новые изобретения
        Плазма нашла широкое применение в современной технике. Она применяется для создания неоновых трубок, ламп-вспышек для самолетов и лазеров. Лампы-вспышки на самолетах известны всем, кто наблюдал за ночным полетом самолета. Мигающие на крыльях самолета огоньки являются лампами-вспышками. Сходные лампы производят импульсы для накачки рубиновых лазеров. Есть плазменные лазеры, в которых ионизированный газ является рабочим телом.
        Ошибочно думать, будто бы плазма совершенно не применяется в другой бытовой технике. Достаточно вспомнить известные всем почитателям компьютерного мира газоплазменные мониторы. Эти устройства мало популярны среди пользователей, поскольку несколько велики и потребляют много тока. Работать от аккумуляторов и батареек в переносном компьютере плазменные дисплеи не станут. И все-таки необычность устройства, высокая светимость экрана, неувядающая яркость красок, долговечность и полное отсутствие запаздывания привлекают к себе внимание ценителей прогрессивных изобретений в сфере компьютерной техники.
        Устроен подобный монитор по аналогии с жидкокристаллическим. В нем установлены несколько стекол, пространство между которыми заполнено газовой смесью. Электрические импульсы поступают в эту среду и превращаются в газовые разряды, ионизирующие смесь. В результате молекулы газа возбуждаются и начинают светиться. Таким образом на дисплее высвечивается информация. Плазма внутри монитора, естественно, низкотемпературная и представляет собой слабоионизированный газ.

7. Законы тока
        Настоящим переворотом в технике на рубеже XIX и XX вв. стало освоение электрической энергии и широкое ее приспособление для нужд развивающейся промышленности. Сегодня электрические приводы, электромоторы, электромагниты и прочие устройства вытеснили паровые установки из заводских цехов. Но электричество пошло гораздо дальше, оно проникло в быт, послужив толчком к созданию массы полезнейших устройств. Несомненно, открытие законов электрического тока заслуживает внимания как одно из наиболее крупных достижений физики.
        Электрический заряд
        Электрический ток представляет собой направленное движение элементарных частиц - электронов, являющихся единичными носителями электрического заряда. Таким образом, ток можно представить в виде течения зарядов по проводнику. Прежде чем человек открыл ток, ему предстояло обнаружить существование заряженных тел и установить законы взаимодействия зарядов, чтобы в дальнейшем прийти к мысли об их движении.
        Открытие количества электрического заряда
        Электрические явления были известны человеку с древнейших времен. Речь идет вовсе не о молниях, которые дали людям огонь, но при этом и порождали суеверный ужас. Молнии не так скоро связали с электричеством. В действительности история учения об электромагнетизме началась с открытия удивительного свойства, которым обладает янтарь. Древние греки заметили, что кусочек янтаря вследствие трения притягивает к себе мелкие и легкие предметы.
        Так человек впервые наблюдал электричество без ужаса и пытался даже объяснить поразительный феномен с натурфилософских позиций. В XVII в. англичанин Гильберт повторял опыты древних. Он убедился, что присущими янтарю свойствами обладают и другие минералы, в частности горный хрусталь и алмаз. Изучением необычных свойств камней занялись многие физики. Поскольку янтарь по-древнегречески назывался «электроном», то и природные явления, связанные с притяжением тел минералами в результате трения, получили название электрических.
        В 1672 г. выходит в свет первая книга, в которой приводится описание опытов с электричеством. Ее автор - немецкий ученый О. фон Герике, известный своими экспериментами с магдебургскими полушариями. Герике является первым изобретателем электрической машины. Его установка не выполняла полезной работы, но была опытной. Устройство состояло из крупного шара, изготовленного из серы, который заряжался посредством трения.
        Герике сделал немало открытий при помощи своего шара, в т. ч. обнаружил существование электрического отталкивания. Оказалось, что под действием электричества тела не только притягиваются, но и отталкиваются друг от друга.
        Француз Дюфе в 1734 г. создает теорию стеклянного и смоляного электричества, в дальнейшем преобразившуюся в теорию положительного и отрицательного электричества (теорию плюсовых и минусовых зарядов). Дюфе выяснил, что янтарь притягивает к себе строго определенные тела, а другие отталкивает. Точно так же ведут себя потертые шелк, бумага и прочие материалы и минералы. Но вот стекло ведет себя с точностью до наоборот. Оно притягивает то, что отталкивает янтарь, и отталкивает то, что янтарь притягивает. Со стеклом сходны по электрическим свойствам горный хрусталь, шерсть и прочие материалы. Тем самым Дюфе убедился, что в природе существуют две группы материалов, порождающие два противоположных друг другу рода электричества.
        Нелишне будет заметить, что утверждение о притягивании тел с противоположными зарядами не совсем верно, если понимать его буквально. Если тела притягиваются, то одно из них может вовсе не иметь заряда, т. е. быть электрически нейтральным. Но вот отталкивание возможно лишь между действительно заряженными телами, причем заряженными одинаково.
        Сам Дюфе называл эти две разновидности стеклянным и смоляным электричеством. Новое название - положительное и отрицательное - было предложено американским ученым Б. Франклином, который больше известен как общественный деятель. Именно Франклин первым догадался об электрической природе молнии и нашел способ показать это экспериментально. Однако этой догадке предшествовало создание лейденской банки. Это устройство, являющееся первым в истории конденсатором, было создано на рубеже 1745 -1746 гг. независимо двумя учеными - голландцем Мушенбруком и немцем Клейстом.
        Название конденсатора происходит от города Лейден, в котором ставил свои эксперименты Мушенбрук. Посредством металлического шеста и медной проволоки он соединил источник электричества (натираемый руками стеклянный шар) с банкой, заполненной водой. Мушенбрук стремился извлечь рукой искру из металлического шеста. Банка предназначалась для отвода излишнего электричества, поскольку тогда считалось, что вода не обладает электрическими свойствами.
        Эффект получился обратный ожидаемому: вода накопила в себе электрический заряд и разрядилась в Мушенбрука, который держал лейденскую банку своей правой руке. «Моя правая рука, - признавался физик в письме Реомюру, - была поражена ударом такой силы, что все тело содрогнулось, как от удара молнии». Сходство действия лейденской банки с грозой и ярчайшие искры, которые получали последующие экспериментаторы из первого конденсатора, убедили Франклина в принадлежности молнии к электрическим явлениям.
        В 1750 г. Франклин составил описание машины для изучения электрической природы молнии. Он утверждал, что специальный железный шест, размещенный на крыше башни, во время грозы будет собирать атмосферное электричество и позволит ученому извлекать искры. Спустя некоторое время Франклин уже разработал на основе своего шеста громоотвод.
        С этим устройством связана прелюбопытная история. Ученые долгое время спорили, какой формы громоотвод следует устанавливать на крышах - закругленный или заостренный. Ситуация в физике напоминала войну «тупоконечников» и «остроконечников» в книге Дж. Свифта «Путешествия Гулливера».
        Но на самом деле развитие науки вовсе не было таким уж забавным. Познание природы грозы было весьма опасным. После того как французский исследователь Далибар успешно проделал первый опыт по рекомендации Франклина, т. н. громовая машина была создана в России учеными Г. Рихманом и М. В. Ломоносовым. Во время одного из экспериментов, проходивших в 1753 г., Рихман погиб от соприкосновения с шаровой молнией. В конце XVIII столетия электрические силы привлекают к себе все большее внимание, причем не только физиков, но и медиков.
        Сообщение Мушенбрука о действии на его организм разрядного удара не прошло незамеченным. Сходные сообщения от прочих экспериментаторов и богатые данные о пострадавших вследствие попадания молнии насторожили некоторых врачей. Знаменитый деятель Великой Французской революции Марат был по специальности медиком и одним из первых заинтересовался проблемой. Он всерьез полагал, что электричество может пригодиться медицине для лечения болезней и даже посвятил этому вопросу свой научный труд «Трактат о медицинском электричестве».
        В 1820 -1830-х гг. эти изыскания увенчались изобретением электрофореза, предназначенного для введения под кожу или через слизистые оболочки лекарственных веществ (в то время - соединений йода) под действием постоянного тока.
        Направление исследований феномена живого электричества назвали гальванизмом. Гальванизм, как ни странно, первоначально очень мало был полезен медицине, хотя эксперименты ставились преимущественно на живых существах. Зато физика многим обязана возникновению этого учения, названного в честь итальянского врача и изобретателя Л. Гальвани. О его работах будет рассказано ниже.
        Пока же рассмотрим, как ученые объясняли сущность электричества. Наиболее прогрессивные умы стремились в духе того времени свести новооткрытое явление к элементарным частицам и фундаментальным законам классической механики. Главные заслуги в данном направлении принадлежат Франклину и петербургскому академику Ф. Эпинусу. Франклин под влиянием учения о теплоте верил, что электричество связано с мельчайшими частицами особого рода, которые наделены способностью проникать сквозь вещество.
        Эти частицы образуют в совокупности т. н. электрическую жидкость. Если у тела отнять путем трения часть электрической жидкости, то оно приобретет положительный заряд. Тело, перенявшее долю частиц, зарядится отрицательно. Если тела вновь соединить, то количество жидкости между ними выровняется таким образом, что оба станут электрически нейтральны (незаряжены). Таким образом, Франклин приблизился к открытию закона сохранения электрического заряда.
        Эпинус, пребывая под влиянием открытий И. Ньютона, увязал взаимодействие заряженных тел с законом всемирного тяготения. Он полагал, что заряженные тела притягиваются и отталкиваются по аналогии с притягивающимися массами в классической механике. Эпинус сделал немало открытий, сравнивая теорию Ньютона с результатами экспериментов над электричеством, и первым четко сформулировал закон сохранения электрического заряда: «Если я хочу в каком-либо теле увеличить количество электрической материи, то я должен неизбежно взять ее вне его и, следовательно, уменьшить ее в каком-либо другом теле».
        Эти воззрения, возобладавшие во всем научном мире, послужили предпосылкой для открытия основного закона электростатики, получившего название закона Кулона. Ш. Кулон - великий французский физик, установил данную закономерность в 1780-х гг. Если Эпинус только предполагал аналогию между электричеством и гравитацией, то Кулон решил проверить опытным путем существование подобного сходства между внешне разнородными явлениями. Параллельно с Кулоном и независимо от него сходными исследованиями занимался англичанин Кавендиш.
        Кулон использовал в своих экспериментах изобретенные им самим же крутильные весы, представлявшие собой разновидность электроскопа. Посредством крутильных весов можно было наблюдать сравнительную величину «электрических сил» двух взаимодействующих зарядов. Кулон в ходе изысканий показал, что электрические заряды взаимодействуют между собой по закону Ньютона: сила притяжения и отталкивания обратно пропорциональна квадрату расстояния. Но ученый пошел еще дальше. Он выяснил, что отталкиваются только одноименные заряды («плюс» и «плюс» или «минус» и «минус»), тогда как притягиваются разноименные («плюс» и «минус»).
        Кроме того, если Ньютон опирался в формулировке своего закона на количество вещества, как тогда называли массу, то Кулон ввел эквивалент массы в учение об электричестве. Ученый назвал этот эквивалент очень просто - количеством электричества. Экспериментально Кулон показал, что величина количества электричества пропорциональна силе взаимодействия между зарядами. Наконец, Кулон определил минимальное количество электрического заряда, возможное в природе. Впоследствии ученые поняли, что носителем минимального заряда является элементарная частица, предсказанная Б. Франклином. В такой обстановке совершил свое открытие Л. Гальвани.
        Изобретение гальваноэлемента
        История физики полна курьезов и парадоксов, в чем успел убедиться читатель. Если спросить у человека, далекого от точных наук, кто изобрел гальванический элемент, то можно услышать в ответ, что это сделал итальянский врач Л. Гальвани. В действительности создатель первого гальванического элемента безвестен, а само изобретение насчитывает несколько тысячелетий.
        Об этом мы можем судить благодаря удивительной археологической находке, сделанной под Багдадом. Ученые во время раскопок древнего города Вавилона, находившегося прежде на этом месте, обнаружили странную конструкцию из металлических кружков, в которой специалисты узнали очень примитивную гальваническую батарею. Для чего понадобилась батарейка в ту далекую эпоху, никому неизвестно. Находка отнесена к числу самых загадочных артефактов.
        Гальвани же не мог создать гальваноэлемент, поскольку придерживался ошибочных взглядов на сущность открытого им явления. Заинтересованный действием электрического тока на живые ткани, ученый в 1780-х гг. проводит серию экспериментов над препарированными лягушками. Гальвани наблюдал, как во время грозы мышцы лягушек, подвешенных на металлические крюки, сокращаются под действием атмосферного электричества.
        Однако более поздние опыты, поставленные в ясную погоду и в комнатных условиях, показали, что мышцы у препарированных лягушек все равно сокращаются время от времени. Спинной мозг у таких лягушек был по-прежнему соединен с медным крюком, который касался железной пластины. Врач решил, что обнаружил «живое электричество», вырабатываемое организмом лягушки. Над Гальвани многие посмеялись. «На меня нападают две совершенно противоположные партии: ученые и невежды, - писал впоследствии Гальвани. - И те и другие называют меня лягушачьим учителем танцев».
        Возможно, замечательное открытие оказалось бы забыто, но необычными опытами заинтересовался соотечественник Гальвани, физик А. Вольта, который доказал, что в организме лягушки нет «живого электричества». До известной степени Вольта ошибался, поскольку в организме любого живого существа присутствуют электрические заряды. Электротоки постоянно перемещаются в тканях, в первую очередь в нервной, передавая по ней импульсы в мозг и из мозга. Электротоки особенно ярко проявляются при работе мышц - скелетных и сердечной.
        Электрокардиограммы (ЭКГ) и электроэнцефалограммы (ЭЭГ) составляются по данным измерений интенсивности биотоков, чтобы проследить за работой сердечной мышцы и коры головного мозга. Тем не менее Вольта был прав в одном: в своих экспериментах Гальвани не смог бы выявить электротоки в организме лягушки, поэтому «живого электричества» врач не открыл. Физик предположил, что мускулатура животного послужила всего лишь индикатором присутствия тока, т. е. среагировала на него сокращениями.
        Мышцы лягушки в экспериментах Вольта сокращались под воздействием обычного электричества (не «живого») точно так же, как в опытах Гальвани. Источником тока в опытах врача послужил, видимо, контакт двух металлов, а именно меди и железа. Тканевые жидкости в теле лягушки играли роль дополнительного проводника, помещенного между металлами. Отталкиваясь от своих предположений, физик сконструировал первую гальваническую батарею, повлиявшую на дальнейшее развитие науки.
        Вольтов столб, как назвали этот источник постоянного тока ученые, состоял из ряда металлических пластин двух типов - цинковых и серебряных, разделенных картонными кружками, которые предварительно пропитывались соленой водой. Поскольку приборов для измерения тока тогда не существовало, то Вольта использовал собственную руку для регистрации тока. Если подключить гальванический элемент в замкнутую цепь, проходящую через человеческое тело, то возникают сходные ощущения, как в эксперименте с лейденской банкой.
        Вольта объяснил возникновение тока дисбалансом электрических зарядов в батарее. Когда взаимодействуют разнородные металлы, то в них нарушается равновесие электрических зарядов. В замкнутой цепи заряды приходят в движение, стремясь прийти к равновесию. Но поскольку это не удается, то заряды движутся постоянно, порождая непрекращающийся электрический ток. В дальнейшем Вольта усовершенствовал свой столб, предложив чашечную батарею гальваноэлементов.
        Используя химическое действие электротока, ученые стали применять батареи для проведения исследования веществ. Так, к примеру, англичанин Дэви в 1807 г. открыл неизвестные до того момента элементы калий и натрий, расщепляя постоянным током некоторые щелочи. Ныне батареи применяются невероятно широко почти во всех компактных или переносных устройствах, работающих от электротока.
        На батарейках работают переносные компьютеры, карманные фонарики, магнитофоны, наручные кварцевые часы, будильники, поющие поздравительные открытки, детские игрушки и множество других устройств. Наконец, на батарейках работают самые полезные домашние устройства - пульты дистанционного управления. Американские специалисты по маркетингу подсчитали, что сегодня в развитых странах на каждую семью приходится в среднем от 2 до 3,5 пульта дистанционного управления.
        С помощью таких пультов мы включаем телевизор и видеомагнитофон, управляем джакузи и компактным домашним кинотеатром, открываем дверь гаража. Вероятно, в обозримом будущем станут выпускаться пульты, совмещающие в себе все необходимые функции, т. е. позволяющие оперировать любой бытовой техникой, рассчитанной на дистанционный контроль. Уже сейчас в продаже появились универсальные пульты, пригодные для дистанционного управления как телевизором, так и видеомагнитофоном (естественно, речь идет не о видеодвойке). По мере совершенствования пультов и их дальнейшей эволюции будут требоваться и батарейки, которые, скорее всего, тоже претерпят различные метаморфозы.
        Сопротивление току
        Всякий без исключения проводник электрического тока способен в силу особенностей своего атомарного строения оказывать сопротивление движущимся зарядам. Это легко заметить на простейшем опыте, который можно провести поздним вечером в каждом городе, когда включается освещение улиц. Фонари вспыхивают один за другим, по очереди, как будто бы ток бежит неторопливо, с легким запозданием.
        Если принять во внимание скорость электронов, почти равную световой, то получится, что человек неспособен увидеть запаздывание зарядов. Ток должен перемещаться по проводам практически мгновенно. Тем не менее этого не происходит. Дело в том, что сам материал проводов тормозит ток.’ Описанное свойство проводников названо в физике электрическим сопротивлением.
        Открыт закон Ома
        Еще в 1729 г. английский физик Грей обнаружил, что электрический заряд свободно передается от одних тел к другим при наличии своеобразного моста, иными словами, вещества-посредника. Скажем, медная проволока вполне могла служить таким посредником, она хорошо проводила электричество. По шелковой нити же электричество не распространялось, что позволило в дальнейшем использовать этот материал в качестве изоляции. Грей, т. о., пришел к выводу, что в природе существуют проводники и непроводники электричества.
        Движение зарядов по проводникам от одного тела к другому ученые назвали электрическим током. К открытию природы электрического тока физиков подвели работы Л. Гальвани и А. Вольта, а также некоторых других исследователей электричества. В частности, Вольта приходит к выводу о существовании разности электрических потенциалов в замкнутой цепи, которую сам же первым собрал. Ученый после открытия контактной разности потенциалов составил т. н. ряд напряжений.
        Ранее рассказывалось, что при сочетании разных металлов в гальваническом элементе производится неодинаковый ток, поскольку они заряжены неодинаково. Физик описал сущность контактной разности потенциалов так: «В силу такого соприкосновения электрический флюид (заряд) гонится от… металлов, от одного больше, от другого меньше (больше всего от цинка, меньше всего от серебра)». Вольта выстроил ряд из разнородных металлов, взятых в контакте, по возрастающему напряжению между ними.
        В начале 1820-х гг. А. Ампер вводит в физику понятие силы тока и находит способы измерения этой силы. Немецкий ученый Г. С. Ом решает заняться исследованиями электричества, а в первую очередь изучением количественных соотношений напряжения и силы тока. В 1826 г. в результате своих изысканий Ом пришел к выводу, что напряжение прямо пропорционально силе тока и неизвестной величине, которая выражает собой противодействие среды движущимся зарядам. Электрическое сопротивление проводника сдерживало течение тока.
        На протяжении последующих десятилетий закон не обращал на себя внимания. Лишь с начала второй половины XIX столетия известные исследователи электрических явлений, такие как Г. Кирхгоф, К. Гаусс, Э. X. Ленц и Б. С. Якоби, признали исключительную важность закона Ома для изучения свойств тока и его работы. Они стали широко применять понятие электрического сопротивления в своих изысканиях и тем самым ввели закон в употребление. На сегодняшний день не найдется ни одного инженера, который не знал бы закона Ома. Между прочим, в 1881 г., уже после смерти этого физика, Международный конгресс электриков решил назвать единицу сопротивления именем ученого - первооткрывателя данного свойства проводников.
        Сегодня известно, что движение зарядов в проводнике происходит весьма удивительным образом. В любом твердом теле, обладающем кристаллической решеткой, всегда существуют свободные электроны. Они являются общими для всех атомов, расположенных в узлах решетки, и переходят с орбиты вокруг одного атома на орбиту вокруг другого. Если проводник замкнут в цепь, то движение электронов становится цикличным. Оно приобретает характер непрерывного движения. Это движение хаотическое, оно обусловлено присутствием внутри кристаллической решетки энергии, увеличивающей энтропию.
        Если на концах замкнутой цепи создать разность потенциалов (напряжение), то заряды придут в упорядоченное движение. Оно и называется электрическим током. Однако характер движения электронов не будет претерпевать существенных изменений. Заряженные частицы по-прежнему перемещаются в таком проводнике, перепрыгивая от одного заряженного ядра к другому. Это их сильно тормозит и вызывает, т. о., потерю энергии.
        Нетрудно понять, что расходуемая электронами энергия превращается в теплоту. Разные вещества обладают неодинаковым сопротивлением, поскольку имеют различное атомарное или молекулярное строение. Положительно заряженные атомные ядра в узлах решетки неодинаково воздействуют на поток свободных электронов, но в зависимости от величины своих зарядов и плотности размещения в решетке.
        Реально ли победить электрическое сопротивление. Полностью этого добиться невозможно, однако значительно уменьшить его вполне допустимо. Эффект сверхпроводимости был открыт в 1911 г. нидерландским физиком Г. Камерлинг-Ониссом. Он установил, что при очень низких температурах металлы и сплавы почти на 100 % утрачивают способность тормозить ток, поэтому электрическая энергия начинает в полном смысле слова течь по проводнику, не испытывая и малейших затрат. К сожалению, физиков вскоре ждало разочарование, поскольку использовать сверхпроводники для передачи тока высокого напряжения невозможно.
        Требовались дальнейшие исследования, которые были призваны установить, что именно мешает человеку применять в промышленности перспективные материалы. Природа загадочного явления получила научное объяснение только в 1957 г. в работах отечественного физика Н. Н. Боголюбова и американцев Дж. Бардина, Дж. Шриффера и Л. Купера. Оказывается, в сверхпроводниках электроны объединяются в пары. Ток парных зарядов обладает уникальными свойствами, поскольку при движении частиц на строго определенной скорости они не испытывают трения. Во всех остальных случаях электроны встречают сопротивление со стороны атомных ядер.
        Сегодня установлено, что ряд материалов можно заставить работать, как сверхпроводники, при сравнительно высоких температурах. Это явление получило название высокотемпературной сверхпроводимости. Изучены и многие другие любопытные свойства проводников такого рода. Возможности практического применения открытого явления рассматривает криоэлектроника и ряд других наук. Приставка в названии криоэлектроники, происходящая от греческого слова krios, означает в переводе на русский язык «мороз, холод» и подразумевает, что такая электроника работает при специальном охлаждении.
        Проводники способны не только увеличивать свои проводящие способности, но и снижать их. Во-первых, проводимость вещества зависит от размеров конкретного образца.
        Если взять ничтожно мелкую частицу металла, то она не обязательно будет проводником, хотя сам металл таковым является. С уменьшением размеров свойство проводимости электрического тока постепенно убывает. Причиной тому служат физические особенности природы электронов, переносящих электрический ток.
        Эти частицы ведут себя одновременно и как электромагнитные волны. Если внутри крупицы металла определенных размеров электроны-корпускулы и могли бы передвигаться, то волны здесь двигаться никак не могут. Для проявления волновых свойств электронов в крупицах определенного размера просто не хватает места. Предельный размер был найден опытным путем, он составляет 10 нм. Именно такую величину должны иметь крупицы проводника, чтобы он полностью потерял свои проводящие свойства.
        Может показаться, что эти исследования носят чисто академический характер. На самом же деле практическое значение открытия колоссально, поскольку оно показывает нам на предел миниатюризации интегральных схем. Современные чипы уже давно собираются из элементов, габариты которых отвечают уровню микромира.
        Утрата проводимости при уменьшении размеров до 10 нм служит естественным препятствием для дальнейшей миниатюризации схем и заставляет искать обходные пути для последующего развития электронной техники. Кроме того, открытие проливает свет на перспективы нанотехнологий.
        Изобретена лампа накаливания
        Электрическое сопротивление зачастую очень вредно, поскольку поглощает колоссальное количество энергии. Трудно вообразить, сколько драгоценного электричества, получаемого с таким трудом, расходуется впустую - превращается в теплоту, идущую на бесцельный нагрев проводов. Вредная работа электрического тока, однако, нашла свое применение во многих устройствах. В первую очередь это касается такой бытовой техники, как электрообогревательные приборы, чайники, утюги, кипятильники, титаны.
        Здесь перевод тока в теплоту не только оправдан, но и необходим. Можно подумать, что в таких устройствах сопротивление материала стремится к бесконечности. Таким образом, движение электронов внезапно прекращается, и они отдают всю свою энергию. Но на самом деле этого не происходит. Если бы движение электронов было приостановлено, то цепь мгновенно оказалась бы разорванной, а прибор отключенным. Произошло бы самоотключение. Однако в действительности ток все равно продолжает течь через прибор, преодолевая его колоссальное сопротивление.
        Есть и более оригинальные способы применения вредного электрического сопротивления в современной бытовой технике. Во-первых, это различные реостаты, т. е. переменные сопротивления, которые используются в электронике в качестве основного устройства для переключения режима работы. Скажем, ручки для регулировки громкости связаны с реостатом. Благодаря изменению сопротивления цепи происходит изменение в ней силы тока, соответственно меняется и величина производимой устройством работы. Во-вторых, это осветительные приборы, в которых используются лампы накаливания.
        Использовать электричество для освещения впервые начали в 1860-х гг., однако применялись такие осветительные приборы только на маяках. В быту и на предприятиях использовать первые лампы было крайне неудобно. Дуговая лампа представляла собой электрическую дугу, открытую в 1812 г. англичанином Дэви. Однако на самом деле первую электрическую дугу создал русский изобретатель В. В. Петров в 1803 г. На его книгу в России не обратили внимания, а за рубежом она была неизвестна, т. к. технических переводчиков с русского языка в то время за границей не было. Поэтому значение для дальнейшего развития электротехники имела именно лампа Дэви. К сожалению, ее приходилось часто регулировать. По мере выгорания углей, между которыми горела электрическая дуга, их концы расходились слишком далеко. Увеличение расстояния приводило к разрыву в цепи и прекращению работы лампы. Дуга гасла. Дуговую лампу значительно усовершенствовал другой выдающийся русский изобретатель П. Н. Яблочков. В 1876 г. он запатентовал свое изобретение - продукт многолетних трудов. Детище ученого получило в технике название свечи Яблочкова.
        Угли (электроды) здесь были направлены не навстречу друг другу, а шли параллельно. Между этими электродами находилась прослойка изолирующего вещества, сгоравшего вместе с углями. Дуговое горение протекало на концах электродов и было направлено сверху вниз, причем угли не расходились. Они всегда были удалены на одинаковое расстояние, определяемое толщиной изоляционной прослойки. Далекие от физики люди именовали изобретение «русским светом». «Русский свет» использовался во всех странах Европы, а также в США и некоторых азиатских государствах.
        Лампа накаливания устроена по совершенно другому принципу. В ней используется сопротивление металлического проводника, нагреваемого электрическим током до высокой температуры, при которой металл начинает светиться, т. е. испускать электромагнитные волны видимого диапазона. Свечение является попыткой вещества избавиться от избыточной тепловой энергии. Всякое обладающее температурой тело что-то излучает. В большинстве случаев это инфракрасные лучи и радиоволны, однако высокие температуры заставляют вещество испускать видимый свет и ультрафиолетовые лучи.
        Создателем лампы накаливания является русский инженер А. Н. Лодыгин. Он сконструировал свою лампу в начале 1870-х гг. В 1873 г. изобретатель провел публичные испытания своего детища, а в 1874 г. был награжден за это изобретение Ломоносовской премией Академии наук. На Западе получили распространение «фонари Эдисона», разработанные независимо от Лодыгина в 1879 г. знаменитым американским изобретателем и бизнесменом Т. А. Эдисоном.
        Этот удивительный человек не занимался наукой профессионально, но был изобретателем-любителем. И вместе с тем он обладал огромными техническими знаниями и увековечил свое имя, создав немало разных прогрессивных устройств. Эдисон считал изобретательство родом предпринимательства и направлял свои занятия физикой и техникой на получение прибыли. Из-за этого научный мир относился к гению с недоверием.
        Нужно заметить, что лампы Лодыгина и Эдисона, а также последующие поколения электрических лампочек выпускались пустотными, т. е. из их баллонов выкачивался воздух. Нить накала появилась впервые в лампе Эдисона. Эта нить представляла собой металлическую дугу. Современные электролампы существенно отличаются от своих предшественниц. Если внимательно рассмотреть содержимое стеклянного баллона электрической лампочки, то можно заметить, что спираль, или т. н. нить накаливания, крепится на молибденовых крючочках, которые установлены на тоководы из никелевого сплава. Молибден способен стойко выдерживать высокие температуры, что и определило выбор материала.
        Сама нить, являющаяся рабочей частью лампочки, изготовляется из самого тугоплавкого металла в природе - вольфрама. Температура его плавления равна +3420 °C. Как только на спираль поступает ток, она под его тепловым действием раскаляется добела. Диаметр нити и ее протяженность подобраны таким образом, чтобы нагрев материала был максимальным, поскольку от этого зависит яркость лампочки. Вместе с тем размеры нити достаточно велики и не дают ей мгновенно испариться от собственной же температуры, которая поддерживается на уровне +2700 °C.
        По нелепому недоразумению принято считать, будто современные лампы накаливания пустотные. На самом деле вакуумные лампы уже давно не создаются. Причиной тому служит тот факт, что они быстро перегорают. Внутри лампы создается низкое давление, чтобы нагреваемый металл медленнее испарялся. Однако это давление вовсе не стремятся довести до высокого вакуума. Производителей ламп больше всего настораживает не давление воздуха, но давление паров самого вольфрама. Эти пары образуются под действием высокой температуры, до которой разогревается нить накаливания.
        Естественно, оставлять в лампе воздух неразумно, т. к. активный кислород легко вступит в реакцию с раскаленным вольфрамом. Поэтому воздух из лампочек действительно выкачивают, чтобы затем заправить стеклянный баллон неактивным газом при низком давлении. Этот газ препятствует образованию паров вольфрама, давление которых вызовет ускоренное перегорание спирали. В прежние времена, когда в ходу были пустотные лампы, проблему решали уменьшением их светимости. На нить подавалась меньшая нагрузка, отчего вольфрам медленнее испарялся, но и светился тусклым красноватым светом.
        Сейчас яркость электролампочек удалось повысить, одновременно продлив срок их службы, посредством неактивного газа-наполнителя. В роли такого газа не так давно выступал чистый азот, а в последние 15 лет исключительно азотокриптоновая или азото-аргоновая смесь. Последняя, содержащая 86 % аргона, применяется наиболее часто. Криптон добавляют в лампы-«грибки», что делает их вдвое долговечнее аргоновых лампочек. Важным достоинством криптона являются его тепловые свойства, которые позволили уменьшить размер стеклянного баллона таких ламп.
        Еще одним способом продлить срок работы лампочки является применение галогенной смеси. То есть баллон галогенных ламп заполняют смесью неактивного азота и какого-нибудь газа из группы галогенов. В подавляющем большинстве случаев в качестве такого добавочного наполнителя используется йод. Вообще-то, металлический вольфрам реагирует с газообразным йодом уже при температуре +700 °C, но именно активная реакция этих двух веществ необходима производителям лампочек.
        Галогены обладают одной интересной особенностью. Они настолько активны, что вступают в реакцию не только с вольфрамом нити, но и с испарившимся металлом, осевшим в виде кристаллов на внутренней поверхности баллона. В результате атомы йода превращаются в транспортную систему, которая захватывает вольфрамовые пары и осадок и возвращает атомы металла обратно в нить. Работает же эта транспортная система исключительно благодаря кислороду. Он в малых долях, в качестве побочной примеси присутствует в газовой среде галогенной лампочки, образуя молекулы оксид-йодида вольфрама. Эти молекулы в конечном итоге и нужно считать переносчиками атомов металла.
        Галогенные лампы изобретены в 1949 г., но до недавнего времени принцип их действия понимался неправильно. В конце концов физики пришли к выводу, что галогенные лампы работают в обход всех законов природы. Лишь развитие технологий очистки металлов (титана, гафния, ниобия и т. д.) посредством галогенов, а также более глубокие изучения сложной природы переходного металла вольфрама дали ответ на вопрос, почему же светят удивительные лампочки.
        Одним из плюсов галогенных лампочек, кроме длительного срока исправной службы, следует назвать их компактность и мощность. Температура нити накаливания достигает в таких лампочках +3000 °C, что соответственно вдвое увеличивает их светимость. Автомобильные фары, фонарики для подсветки витрин, лампы кино- и диапроекторов наполнены йодистой смесью, потому что от этих источников света требуется большая яркость, долговечность и малые размеры.
        Что касается мощности электрической лампы, то она также высчитывается посредством замера сопротивления и силы тока. Мощность равна произведению квадрата силы тока на сопротивление. Величина удельного электрического сопротивления вольфрама очень низка, она равняется всего 0,055 мкОм?м (микроом-метр). Более низкое значение имеют некоторые другие металлы, но их использовать невыгодно. Скажем, алюминий (0,028 мкОм?м) слишком легкоплавкий.
        Эта же формула объясняет причину, по которой лампочки перегорают. Толщина спирали неодинакова на всем ее протяжении, и ее разрыв происходит, разумеется, в самом тонком месте. Пословица гласит в таком случае: «Где тонко - там и рвется». А вот физика объясняет, почему рвется тонкий участок нити накала. Поскольку сопротивление проводника напрямую зависит от площади его поперечного сечения, то нетрудно понять, что в тонком участке сопротивление резко увеличивается. Одновременно растет и мощность тока. Естествен но, с повышением мощности степень нагрева тонкого участка также возрастает. Этот участок активнее разрушается и в конечном итоге оплавляется, что приводит к разрыву нити.
        Заканчивая рассказ о проводящих свойствах материалов, нельзя не затронуть явление сверхпроводимости. Обычно физики в широкой печати сетуют на то, что их преследуют неудачи в изучении секретов сверхпроводимости. В связи с этим далекие от физико-технических наук читатели обычно заключают, что сверхпроводящие материалы появятся лишь в далеком будущем, а пока являются чем-то из области фантастики.
        В действительности же в наши дни многие загадки феномена сверхпроводимости разгаданы, получены некоторые необычные материалы, применяемые в современной технике. Получение таких материалов затруднено, поэтому они и не имеют широкого распространения. Но в любом случае недооценивать возможности науки нельзя. На сегодняшний день получены низкотемпературные, высокотемпературные и керамические сверхпроводники. К низкотемпературным относятся почти все виды данных проводящих материалов.
        Высокотемпературные представлены несколькими веществами, в первую очередь сплавом из германия и ниобия, который проявляет сверхпроводящие свойства при температуре -251 °C. Он обозначает нижнюю температурную границу, а верхнюю границу физики желают поднять как можно выше. С 1987 г. ученые нашли немало материалов, которые становятся сверхпроводящими при температуре всего -148 °C. Керамические сверхпроводники были открыты в 1986 г. швейцарскими физиками. Это вещества группы металл оксидных керамик, которые начинают беспрепятственно пропускать ток при высоких температурах, около -230 °C.
        Подобные материалы служат главным образом науке. На ускорителях заряженных частиц на питание магнитов затрачивается большая энергия, которая могла бы использоваться в других целях. Сверхпроводящие магниты обладают колоссальной мощностью при меньших энергетических затратах. Созданы диагностические медицинские приборы - компьютерные томографы, в которых применяется т. н. ядерно-магнитный резонанс. Магнитное устройство томографа, изготовленное из обычных проводников, делало бы его слишком громоздким и совершенно неудобным для работы врачей. Сверхпроводящие материалы обеспечили необходимую компактность и доступность универсального средства диагностики.
        Во многих странах создаются экспериментальные «левитирующие» поезда на магнитной подвеске. Они разработаны специалистами Японии, США, Канады, Германии и Франции. Это сверхскоростные транспортные средства, движущиеся без трения. Они летят над монорельсом за счет магнитных сил, удерживающих их в воздухе и ведущих вперед.
        Естественно, чудо-магнит удалось создать благодаря применению сверхпроводников. Магнитная подвеска для такого поезда должна обладать свойством сверхпроводимости. Еще в 1913 г. удалось установить, что сверхпроводящие материалы боятся интенсивных магнитных полей, но стремятся вытеснить их. Приближая к сверхпроводнику магнит, можно возбудить в поверхностном слое первого незатухающие токи. Они заэкранируют внешнее магнитное поле и заставят магнит висеть над проводником.
        Другим замечательным применением сверхпроводимости в науке стало создание высокочувствительных приборов - измерителей напряженности магнитного поля, т. н. СКВИДов. Поскольку сверхпроводники стремятся заэкранировать внешнее магнитное поле, то они на него очень чутко реагируют. Магнитное поле проникает внутрь замкнутого проводника постепенно, квантами. Квант, как известно, является чрезвычайно малой величиной. Вот почему чувствительность СКВИДов очень велика. Они способны зарегистрировать проникновение минимальной величины магнитного потока. Применение СКВИДов позволило точно замерить магнитные поля сердца и головного мозга человека, что было бы невозможным с применением обычной аппаратуры.
        Одним из самых примечательных достижений будущего в области техники сверхпроводников станет постройка электронной вычислительной машины на подобных материалах. Сверхпроводящие элементы, используемые в ядре чипа, будут обладать многочисленными достоинствами. Во-первых, крайне низкое сопротивление току приведет к ничтожному выделению тепла. А именно высокое тепловыделение элементов микросхем препятствует повышению их компактности. Во-вторых, скорость переключения такого элемента составит всего 10^11^ с, т. е. 10 миллиардных долей секунды! Сверхпроводящий компьютер будет отличаться высокой скоростью действия.
        Электромагнитное поле
        Взаимодействие между телами передается разными способами, однако общим моментом для всех случаев является наличие передатчика взаимодействия. Таким передатчиком может служить какая-либо особая среда. Гравитационное взаимодействие распространяется посредством поля тяготения, через которое передается сила притяжения между массами. Электромагнитное поле служит средой для передачи взаимодействия между электрическими и магнитными зарядами.
        Открытие электромагнетизма
        Люди обратили внимание на магнитные силы еще в далекие от современности времена. Само название феномена происходит от древнего города Магнесии, близ которого располагались внушительные залежи магнитных руд. О свойствах магнита люди знали испокон веков, еще задолго до того, как магнитный железняк получил свое название.
        Первооткрывателями магнетизма следует считать древних индейцев ольмеков, сформировавших развитую цивилизацию. Они около 4000 лет назад открыли свойства магнитного железняка и высекали из него скульптуры тучных людей. Назначение этих скульптур до конца не определено историками, однако ученые установили, что силовые линии магнитного поля каждой скульптуры сходятся в точности на ее пупе. Таким образом, ольмеки имели представление о силовых линиях магнитного поля.
        Они, видимо, знали о существовании земного магнетизма и о том, что с его помощью можно ориентироваться на местности. О наличии таких познаний свидетельствуют каменные изваяния черепах с магнитной головой. Далекие странствия морских черепах были известны многим древним народам. Видимо, ольмеки связали навигационные способности животных с наличием у них магнитного чувства.
        С древнейших времен люди сложили немало легенд о загадочном явлении природы. Собиратель разнообразных занимательных историй, римский литератор Плутарх рассказывал о магнитной горе близ берегов Индии. Эта гора якобы могла вытягивать силой своего магнитного притяжения металлические гвозди из досок кораблей, отчего суда разрушались и тонули. Позднее страшная легенда вошла в состав сборника арабских сказок «Тысяча и одна ночь».
        Но римляне не довольствовались пересказом красочных легенд, они пытались материалистически объяснить сущность сил и процессов в окружающем их мире. Атомист Лукреций в своей энциклопедической поэме «О природе вещей» (I в. до н. э.) подробно описывает действие магнетизма:
        Видеть случалось мне, что прыгают в медных сосудах
        Самофракийские кольца с железа опилками вместе,
        Бурно бушуя, когда под сосудом камень магнитный,
        Словно скорей убежать они жаждут от этого камня.
        Далее Лукреций дает объяснение феномена в духе того времени. Античные атомисты наивно полагали, что притяжение и отталкивание железа и магнита вызвано потоками неустойчивых частиц в магнитном веществе. В целом объяснение невероятно сложно и совершенно ошибочно. Однако оно представляет собой продукт работы ума и свободно от фантазий о душах, которыми наделяли магнитный железняк мистики.
        Примерно 2000 лет назад обнаруживают магнитные свойства китайцы. Уже в период Средневековья, около 1000 лет назад, они изобретают компас, а несколько позднее защитные ворота. Магнитные ворота были установлены у императорского дворца. Они притягивали к себе всяческие металлические изделия и тем самым могли выдать преступника, задумавшего пронести в императорский дворец оружие.
        Первый компас представлял собой намагниченную металлическую пластинку (стрелку компаса), закрепленную на дощечке, которая свободно плавала в глиняном сосуде с водой. Поскольку трение воды было очень слабым, а масса магнитной пластинки невелика, то металл активно притягивался к полюсам планеты. Магнитные полюса создают равные силы, которые действуют на намагниченное тело так, что оно не смещается в сторону полюсов, а занимает положение вдоль силовых линий.
        Стрелка компаса, т. о., выстраивается вдоль линий напряженности магнитного поля Земли и тем самым указывает направление на магнитный полюс. В XII столетии компас попадает в Европу, где получает широкое распространение, поскольку оказывается очень выгодным навигационным прибором для активно развивающегося мореходства. Появление компаса в Европе способствовало наступлению Эпохи Великих географических открытий, которая началась с открытия Америки и морского пути в Индию.
        Значение компаса для колонизаторских и торговых походов европейцев было исключительным, что заставило ученых уже в средние века заняться исследованием необычной природы магнетизма. Знатоки морской навигации прекрасно знали о существовании у Земли двух полюсов, а кроме того, установили, что строгое направление на магнитный полюс не совпадает с точным направлением на полюс географический, находимый по Полярной звезде. Дело в том, что два полюса совпадают лишь частично. Небольшое расстояние между ними требует внесения в путевые расчеты поправки, которая называется магнитным склонением.
        История сохранила сведения о любопытном случае. Во время экспедиции адмирала X. Колумба в Новый свет среди матросов поднялась паника, т. к. компас внезапно изменил свои показания и стал указывать совершенно новое магнитное склонение. Адмирал, уверенный в правильности выбранного маршрута, чтобы успокоить матросов, тайком повернул картушку компаса. Прибор стал давать привычные показания.
        Причиной же странного поведения компаса было, во-первых, нахождение каравелл Колумба в другом полушарии планеты, а во-вторых, махинации адмирала с путевым журналом, куда он заносил неверные данные. Колумб стремился держать матросов в неведении относительно количества пройденного пути, иначе команда могла решить, что путешествие слишком затянулось.
        Физики, явившиеся первыми исследователями необычного явления природы, обнаружили непонятную связь между электрическими и магнитными явлениями. Однако объяснить ее физики тогда не пытались, потому что не испытывали большого практического интереса к электричеству. Оно привлекло к себе внимание лишь с наступлением Нового времени, особенно в конце XVIII - начале XIX вв.
        В 1600 г. англичанин Гильберт издает первый в истории труд, посвященный магнетизму. В этой работе собраны многие интересные наблюдения, касающиеся, в частности, земного магнетизма, а также ряда известных в то время электрических явлений. Гильберт называл нашу планету большим магнитом, поскольку она, так же как и любой магнитный камень, имеет разноименные полюсы. Физик доказал свои воззрения экспериментальным путем. Он намагнитил большой шар и приложил к его поверхности компас. Стрелка непременно указывала направление на полюс. Ученый сообщает также о другом своем замечательном открытии: оказывается, противоположные полюсы притягиваются, но вот одноименные отталкиваются.
        Причины, по которым некоторые планеты обладают магнитным полем, до конца не выяснены. Предполагается, что магнитное поле Земли генерирует ее железоникелевое ядро, которое окружено подвижной вязкой жидкостью. Ядро и обтекающая его жидкость действуют подобно динамо-машине. У Луны магнитное поле чрезвычайно слабое, почти нулевое, поскольку ее недра давно утратили активность. То же касается и прочих планетных спутников. Исполинский Юпитер обладает самым мощным магнитным полем из всех планет Солнечной системы.
        Астрофизики отметили некоторые необычные свойства этого поля. Например, оно резко уменьшается в районе юпитерианского спутника Ио. Пока у астрофизиков есть только одно правдоподобное объяснение феномена. Спутник, недра которого крайне активны, обладает собственным слабым полем. Приборы автоматических станций это поле не зарегистрировали. Зато оно служит силовым барьером, экранирующим Ио от действия мощного магнитного поля планеты-гиганта. Получается, что магнитная оболочка Ио напоминает собой маленький пустотный пузырь в магнитной оболочке Юпитера.
        Магнитная оболочка Земли, простирающаяся в космическое пространство, называется магнитосферой. Наиболее значимые части земной магнитосферы получили название радиационных поясов Земли (РПЗ). Это области, где силовыми линиями магнитного поля захватываются заряженные частицы солнечного излучения. Некоторые из частиц периодически высыпают в область схода силовых линий, т. н. касп, где ионизируют воздух.
        Такая ионизация вызывает свечение, получившее название полярного сияния. В настоящее время полярные сияния тщательно исследуются с помощью специальной техники - гелиографов, особых фотографических устройств, компьютеров, благодаря которым ученые получают информацию о свойствах магнитного поля Земли, о приближающихся магнитных бурях, о солнечной активности, поскольку именно Солнце поставляет в зону РПЗ заряженные частицы.
        Раскрытие природы магнетизма пришло только в начале XIX в. В 1820 г. датский физик X. Эрстед читал лекции о тепловом действии тока. По случайности рядом оказался компас. Его стрелка пришла в движение, едва Эрстед замкнул цепь. Один из студентов обратил внимание физика на этот факт, и ученый сразу же понял, что электрический ток, движущийся в цепи, создает собственное магнитное поле. В том же году проводили сходные исследования Ампер и Араго.
        Физики также подтвердили существование магнитных свойств электрического тока. Как оказалось впоследствии, электричество и магнетизм представляют собой две стороны одного и того же природного явления. Магнитное и электрическое поля есть разновидности единого электромагнитного поля, посредством которого между собой взаимодействуют заряженные частицы. Каждый электрический заряд обладает электрическим полем. Если он движется, то способен генерировать магнитное поле. А переменное магнитное поле неизменно порождает электрический ток. Это объясняет причины притяжения магнитного железняка. Его магнитное поле порождается движущимися электронами.
        Практически всякий природный магнит состоит из множества мельчайших частиц, которые представляют собой маленькие магнитики. Эти магнитики ориентированы в пространстве строго определенным образом и тем самым формируют направленное магнитное поле, усиливая друг друга.
        Железо и сталь также состоят из магнитиков, которые, однако, очень слабы и в малой степени упорядочены.
        Если на эти материалы повлиять сильным магнитным полем, то частицы железа выстроятся в ряды и металл приобретет магнитные свойства. Железо станет притягиваться магнитом, как если бы само было магнитным. Интересно, что перестройку малых магнитиков можно услышать. Достаточно для этого подсоединить катушку со стальным сердечником к динамику и пустить через нее ток. Катушка начнет вырабатывать магнитное поле, под влиянием которого частицы стали начнут упорядочиваться, принимать ориентированное по силовым магнитным линиям расположение. Звуки, раздающиеся из динамика, порождены этим процессом, они как бы служат его отражением.
        Среда существования электрических и магнитных тел - электромагнитное поле. Первым высказал такую мысль Дж. Максвелл, который в 1860 -1865 гг. обосновал свои идеи математически. Также Максвелл понял, что колебания зарядов приводят к возмущениям электромагнитного поля, которые тоже имеют характер колебаний. Эти колебания распространяются в поле со скоростью 300 000 км/с в виде электромагнитных волн. Физики привыкли называть электромагнитные волны излучением.
        Каждый вид излучения, включая световое, является разновидностью электромагнитных колебаний с определенной длиной волны. Скорость движения электромагнитных волн, как впоследствии установили ученые, является максимальной скоростью распространения электромагнитного и любого другого взаимодействия в природе. Немецкий ученый Г. Герц в 1887 г. создал прибор для генерации электромагнитных колебаний и с его помощью поставил эксперименты, доказывающие справедливость теории Максвелла.
        Изобретение средств связи
        Покорение безграничного электромагнитного поля позволило человеку обеспечить свое техническое могущество посредством создания средств связи. Современные средства связи весьма разнообразны, однако все они в той или иной степени основаны на использовании электромагнитных явлений. Радиосвязь всецело опирается на возбуждение и прием электромагнитных волн большой длины, которые так и назвали радиоволнами. Изобретателем радио является русский физик A. C. Попов, придерживавшийся взглядов Максвелла на природу электромагнетизма.
        В 1890-х гг. он увлекся опытами Герца и стал ставить сходные эксперименты самостоятельно, значительно усовершенствовав устройства излучения и приема электромагнитных волн. В результате этих экспериментов Попову удалось сконструировать радиопередатчик и радиоприемник, демонстрация которых проводилась 7 мая 1895 г. Первыми словами, переданными по радио, были имя и фамилия Генриха Герца.
        Попов заложил фундамент техники радиосвязи, которую называл беспроволочным телеграфом. Изобретатель непрерывно совершенствовал свое детище. В 1897 г. он добился сначала увеличения расстояния передачи сигнала с 250 м до 600 м, а затем и до 5 км. При этом ученый прилагал все усилия, чтобы беспроволочный телеграф шире применялся во флоте. Благодаря стараниям Попова в начале XX в. была установлена радиосвязь на морских судах Российского флота. В январе 1900 г. радио впервые было применено в практических целях: на ледоход «Ермак» было передано сообщение о терпящих бедствие рыбаках. Таким образом, история радиосвязи началась со спасательной акции. В 1920-е гг. радиоприемники широко распространяются почти во всех странах мира.
        От радиоэлектроники исходят электромагнитные колебания. Плотный электросмог окутывает планету, вызывая у многих проблемы со здоровьем. По большей части, к счастью, страхи по поводу болезней электронной цивилизации сильно преувеличены. Рост бытовой электроники и усложнение систем связи безвредны для здорового человека до тех пор, пока он соблюдает технику безопасности.
        Из всех бытовых устройств самым опасным является только микроволновая печь, способная «изжарить» человека на расстоянии. Но микроволновые печи именно в силу этой причины создают с весьма надежной защитой. Что касается компьютеров, то современные их модели выпускаются со значком Low Radiation (низкая радиация), что означает низкий уровень излучения, идущего от экрана. Таким компьютерам уже не нужны защитные экраны, поскольку на расстоянии всего 30 см от монитора уровень радиации равен нулю.
        Однако опасность для человека существует вне дома. Высоковольтные линии электропередачи, мощные радиопередатчики, промышленные и прочие электромагниты, а также трансформаторные будки генерируют сильные электромагнитные колебания. Длительное пребывание в местах, где находятся подобные установки и устройства, может оказаться чрезвычайно опасным. Как уже было сказано выше, вредные для человеческого организма колебания электромагнитного поля называются экологами электросмогом.
        Впрочем, в последние 25 лет ученые столкнулись с удивительной болезнью - аллергией на электрические и магнитные поля. Аллергия такого рода является редким заболеванием, однако причиняет больным, страдающим ей, массу проблем. Такой человек реагирует на любой электросмог, в т. ч. минимальный, существующий в наших квартирах. У больных меняется состав крови, появляются головные боли, тошнота и кровотечения из носа, а также другие болезненные симптомы. По-видимому, перед нами плата за достижения научно-технического прогресса.
        Немало слухов ходит и вокруг другого популярного и необходимого средства связи - телефона. Познакомимся с ним поближе. Изобретателем телефона является уроженец шотландского города Эдинбурга А. Г. Белл. Отец будущего техника был специалистом по фонетике и преподавал технику ораторского искусства, именно от него сын перенял интерес к языку. Впоследствии в Бостоне (США) изобретатель преподавал в школе для глухих и попутно активно изучал механику речи в надежде создать прибор, возвращающий людям слух.
        Тогда-то Белл совершенно случайно разработал принципы телефонной связи. В ту пору многие работали над созданием телефонного аппарата, включая великого Т. А. Эдисона, которому иногда ошибочно приписывают первенство в создании этого устройства. Белл опередил всех. Успех пришел к нему 10 марта 1876 г. Изобретатель находился в номере бостонской гостиницы и пытался связаться со своим помощником Т. Уотсоном, который среди шумов неожиданно услышал историческую фразу: «Мистер Уотсон, приходите, пожалуйста; я хочу вас видеть!». Это была первая фраза, переданная по телефонному проводу. Любопытно, что после утверждения патента на изобретение телефона газеты во всем мире разразились страшной критикой. «Речь нельзя передавать по проволоке, поскольку это противоречит законам природы», - утверждали газетчики.
        Одна из бостонских газет даже решила привлечь полицию, чтобы наказать мошенника, «который вытягивает у доверчивых людей деньги, показывая им аппарат, могущий якобы передавать на расстояние человеческий голос посредством металлической проволоки». Несмотря на эту критику, изобретатель еще при жизни достиг вершины славы. Он проявил настойчивость и продавал телефоны всем желающим. Если продавать не получалось, то он давал телефоны напрокат и сам же потом звонил своим клиентам, чем приводил людей в неописуемый восторг.
        Как ни странно, Белл не любил свое детище. Он считал телефон кошмарным изобретением, которое своими назойливыми звонками прерывает ход мыслей. Белл уверял, что единственным стоящим техническим изобретением нужно считать радио. Оно исправно обеспечивает связь и легко отключается в любой момент!
        Давно известно, что телефоны являются настоящим стихийным бедствием для женщин, которые зачастую проводят с трубкой в руке целые часы. Однако последние исследования показали, что изобретение Белла таит опасность и для представителей сильного пола. Американские медики наблюдали группу физически и психически здоровых мужчин, которых в ходе эксперимента лишили мобильных телефонов. Без них мужчины впали в состояние подавленности, депрессии и даже сильного стресса. Некоторые из испытуемых постоянно ощущали неуверенность в себе.
        Однако именно от мобильных телефонов медики рекомендуют отказаться. Дело в том, что люди прижимают трубку вплотную к уху, в результате чего вмонтированный в нее передатчик воздействует на головной мозг своими сильными электромагнитными полями. А это грозит возникновением опухоли мозга и прочих неприятностей со здоровьем. Гораздо безопаснее телефоны в салоне автомобиля, передатчик которых достаточно удален от пользующегося таким телефоном человека. Чтобы обезопасить себя от вредного действия сотового телефона, необходимо держать трубку в 3 -5 см от уха. На этом расстоянии генерируемые передатчиком поля ослабевают и не могут причинить вред человеку.
        Если спросить у ряда людей, кто придумал слово «телефон», то почти все ответят, что это сделал сам изобретатель устройства или, по крайней мере, другие инженеры, продвигавшие технику телефонной связи после Белла. На самом деле А. Белл использовал для описания разработанной им технологии уже готовое слово «телефония», которое появилось как минимум за 20 лет до изобретения телефона и было составлено из корней греческих слов tele - «далеко» и phone - «звук». Первоначально так назывались в совокупности все средства передачи сообщений с помощью звуковых сигналов. Начиная с 1860-х гг. под телефонией понимается исключительно передача кодирующих сигналов посредством стрельбы из пушек и ружей. Лишь в конце 1880-х гг. телефонию связали с электрическими способами передачи звуковой информации.

8. Строение вещества
        Великий греческий мудрец Сократ (V -IV вв. до н. э.), подчеркивая ограниченность человеческих знаний, некогда сокрушенно восклицал: «Я знаю, что я ничего не знаю». Спустя почти 200 лет после того, как была произнесена эта ставшая крылатой фраза, на нее откликнулся эпикуреец Метродор: «Л я даже этого не знаю!». Сходным образом можно охарактеризовать ситуацию, сложившуюся в той области физики, которая занимается изучением элементарного строения материи. Мы все еще очень мало знаем о мире частиц, слагающих вещество. Однако то немногое, что нам удалось установить, убеждает - иногда полезно забывать о невежестве и вести поиск наперекор обстоятельствам.
        Электрон неисчерпаем
        История открытия атома хорошо известна. Примерно 3200 лет назад финикийский мудрец Мох Сидонский предположил существование мельчайших частиц, слагающих материю. В V в. до н. э. это учение возрождают греческие натурфилософы Левкипп и Демокрит, присвоившие атому его современное название, означающее «неделимый». Их точка зрения возобладала в науке. Это история изучения элементарных частиц известна многим. Однако есть и другая история, тесно связанная с открытием электрона.
        Благодаря этому открытию физики пришли к выводу о делимости атома, неисчерпаемости материи, обнаружили много новых элементарных частиц, а главное - сумели описать строение атомов и, исходя из этих представлений, объяснить их свойства. Таким образом, подлинное открытие мира мельчайших частиц состоялось лишь тогда, когда было установлено существование электрона и определено его положение в атоме.
        Открытие электрона
        Первым понял, что электрический заряд нельзя дробить бесконечно, французский физик Ш. Кулон. А Б. Франклин выдвинул гипотезу о существовании электрических частиц. Когда в 1860-е гг. учение о молекулах и атомах (кинетическая теория) возобладало в науке, ученые задумались о том, действительно ли существуют электрические частицы. Учение об электричестве долгое время обходилось без понятия электрона.
        Существенный сдвиг в теории произошел только после работ М. Фарадея. Опираясь на них, Дж. Максвелл пришел к выводу о существовании в природе электромагнитного поля. В 1881 г., следуя теории Фарадея, другой физик, англичанин Стоней вычислил величину элементарного электрического заряда. Но ученые не могли предположить, что электрон имеет меньшие размеры, чем атом, считавшийся единицей строения вещества.
        Открытие электрона состоялось в 1897 г. К нему науку подвел, как ни странно, газовый разряд. Изучение электричества началось с наблюдения за молниями - типичными искровыми разрядами в атмосфере. Помимо молний существуют и другие виды электрических разрядов в газах: коронные, дуговые, тлеющие разряды. Коронные наиболее впечатляют. Они были известны с давних времен под названием огней Святого Эльма. Эти огни вспыхивали с приближением грозы на шпилях башен и мачтах кораблей. Атмосферное электричество стекало на острый предмет и ионизировало воздух, вызывая его свечение.
        Молния тоже стремится попасть в какой-то предмет, но она не стекает, а проскакивает искрой, несущей колоссальный заряд. Кстати, то, что люди называют ударом молнии, представляет собой очередь из 10 -20 сильнейших разрядов, движущихся по электрическому каналу (стримеру) один за другим. Для человеческого глаза они сливаются в единую вспышку. Англичанин Дж. Дж. Томсон открыл электрон, изучая особый вид разряда - катодные лучи.
        Они являются сфокусированным в пучок потоком электронов в газе и образуются при самостоятельном газовом разряде. Плотность газа очень низка, его давление не должно превышать 0,01 мм рт. ст. Такой пучок электронов можно получить в катодной трубке, устроенной примерно так же, как и кинескоп телевизора. Электроны срываются с холодного катода (отрицательного электрода) трубки и попадают на экран с люминофором. Встроенные в трубку магниты и заряженные пластинки отклоняют своими полями, магнитным и электрическим, электронный луч.
        Смещение луча можно измерить по изменению положения светлого пятна на экране люминофора, а отсюда уже найти энергию пучка и провести остальные замеры. Томсон догадывался, что катодные лучи представляют собой поток частиц, но отказывался в это поверить. И только после длительных замеров он был вынужден признать существование электрона. Эта элементарная частица имеет массу, в 1000 раз меньшую массы атома водорода, самого легкого из всех атомов.
        Томсон создал первую модель атома, в которой маленькие заряженные шарики-электроны были погружены внутрь положительно заряженного ядра. Физики, признав существование заряженной частицы, склонялись к убеждению, что электрон есть крупица вещества, на поверхности которой находится элементарный заряд. Эксперименты, однако, не подтвердили этих догадок. Оказалось, что электрон и есть заряд, а не вещество, покрытое зарядом. Это единичный заряд, который ведет себя, как частица.
        Масса электрона - это не вес вещества. В данном случае речь идет об электромагнитной массе, зависящей от скорости частицы. Само вещество оказалось совокупностью зарядов - положительных и отрицательных. В дальнейшем было установлено, что электрон, как и свет, имеет корпускулярно-волновую природу. То есть наши тела не являются чем-то твердым и плотным, а представляют собой набор электромагнитных волн и зарядов. Наука оказалась не готовой адекватно воспринять открытие необыкновенных свойств материи. Математик и физик А. Пуанкаре называл такое состояние в физике «кризисом науки».
        Преодолеть этот кризис удалось во многом благодаря дальнейшим исследованиям электрона, оказавшегося поистине неисчерпаемым. Во-первых, физикам предстояло открыть истинное строение атома. Модель Томсона была неверной, взамен нее японский ученый Нагаока предложил в 1903 -1904 г. планетарную модель, усовершенствованную в 1910 г. Э. Резерфордом. Она используется и сейчас в популярной литературе для описания строения атома.
        В центре атома находится огромное заряженное положительно ядро. Оно состоит из протонов и нейтронов. Протоны несут положительный заряд, тогда как нейтроны никак не заряжены. Положительный заряд притягивает к себе отрицательные частицы - электроны, которые под действием электромагнитного притяжения обращаются вокруг ядра по орбитам так же, как планеты движутся вокруг Солнца в космосе. Атом водорода - простейший из всех остальных, он состоит из одного протона и одного электрона.
        Планетарная модель потрясла многих мыслителей и ученых. Сходство между ничтожной частицей и Вселенной было невероятным. Тогда поэт В. Брюсов, поддаваясь всеобщему настроению, написал мечтательные строки: «Быть может эти электроны - миры, где пять материков…». На самом деле внутри атома не может быть второй Вселенной и другой цивилизации. Дело в том, что количества внутриатомных сил и превращений недостаточно для того, чтобы повторить разнообразие явлений природы в настоящей Вселенной.
        Возвращаясь от фантазий к реальности, заметим, что электрический заряд каждого атома в целом нейтрален, т. к. положительный заряд ядра уравновешивается отрицательным зарядом электронов. Избыток электронов превращает атом в отрицательно заряженный ион (катион), а недостаток этих частиц - в положительно заряженный ион (анион). Эта модель, однако, сильно упрощена и многого не объясняет. Противоречия удалось разрешить ученику Резерфорда, датскому физику Н. Бору, построившему квантовую модель атома. Открытие квантования электронных орбит считается одним из крупнейших достижений физики XX в. Оттого на рисунке - послании внеземной цивилизации, помещенном на борту американских автоматических станций «Пионеров», схематически отображено квантовое строение электронной оболочки атома. Модель занимает большую часть рисунка, потесняя схему Солнечной системы, строение молекулы водорода и даже изображение мужчины и женщины как двух равных представителей нашего вида - Человека разумного. Если космическое послание найдет своего адресата, то инопланетяне узнают о высоком уровне наших физических представлений.
        Бор провел вычисления устойчивости электронных орбит и пришел к выводу, что у электрона во внешнем слое есть несколько дозволенных, т. е. стабильных, состояний. Во всех остальных положениях электрон утрачивает стабильность, и атом начинает терять энергию в виде излучения. Вот почему генерируют когерентный луч лазеры и тускло светят лесные гнилушки: электроны в возбужденных атомах перескакивают на недозволенные орбиты и становятся нестабильными. Состояния электрона любопытны тем, что он переходит из одного в другое скачкообразно.
        Энергия электронной оболочки квантуется, т. е. делится на порции. Так происходит с энергией в любых физических процессах, но человек не замечает квантования, потому что порции энергии бесконечно малы. Нам кажется, что она расходуется плавно. Перемещения электрона из дозволенного состояния в недозволенное и наоборот не могут сопровождаться плавным изменением энергии. Ведь частица столь мала, что и энергия ее импульса ничтожна. Отсюда невероятные скачки электрона и квантование его орбит и состояний.
        Разным орбитам соответствуют разные состояния и разные значения энергии электрона. От состояния электронов во внешнем электронном слое зависит способность атома вступать в химическую связь. Когда квантовую модель атома Бора объединили с представлениями о волновой природе электрона, то получилось, что никаких электронных орбит не существует. Положение электрона в заданный момент времени определить невозможно, т. к. он перемещается скачкообразно, без ускорения. В результате частица распределяется по всей своей орбите.
        Орбита уже сама на себя непохожа. Поэтому было решено назвать ее электронной орбиталью - местом, где отрицательная частица пребывает с наибольшей вероятностью. Еще орбиталь именуют электронным облаком, поскольку распределенный вокруг атомного ядра, вечно пребывающий в суетном движении электрон действительно напоминает небольшое косматое облачко. Поскольку электрон обладает волновыми свойствами, то можно сказать, что вдоль всей орбитали устанавливается стоячая волна.
        В 1974 г. американскими физиками Ритцем и Бартелом были с применением метода голографии впервые получены увеличенные в 500 млн раз микрофотографии атомов. Атомы принадлежали инертным газам неону и аргону. На фотографиях отчетливо выделяются размытые электронные облачки. Так ученые смогли воочию увидеть орбитали.
        Изобретение устройств с рентгеновскими лучами
        Однажды у писателя К. Мая, известного своими романами об индейцах, спросили его мнение касательно нашумевшего открытия В. К. Рентгена. Писатель ответил, что открытие является подлинной сенсацией, однако, как и любая сенсация, оно вскоре предастся забвению. Любопытно, что профессор Вюрцбургского университета, немецкий физик Рентген очень любил читать «ковбойские истории» К. Мая. Представлять особо великого физика не нужно, поскольку он известен всему миру как первооткрыватель рентгеновских лучей.
        Рентген был выдающимся физиком-экспериментатором, причем, скорее всего, именно умение блестяще ставить опыты и добиваться однозначных результатов привело ученого к замечательному открытию. Рентген, как и Дж. Дж. Томсон, изучал электрические разряды в газах и наблюдал за катодными лучами. Собственно говоря, глубокий интерес Томсона и прочих физиков был вызван как раз открытием Рентгена. До него ученые в течение нескольких лет наблюдали катодные лучи, но так и не пришли к каким-либо серьезным выводам.
        В конце XIX в. Рентген ставил опыты с классической газоразрядной трубкой, снабженной двумя электродами - положительным (анодом) и отрицательным (катодом). Из трубки был выкачан почти весь воздух, в ней создавалось давление примерно 10 Па. В то время уже было известно, что катод испускает какие-то особые лучи. Томсон впоследствии доказал, что катодные лучи представляют собой поток электронов, срывающихся с катода. В опытах Рентгена электроны падали не на люминофорный экран, а на анод, вызывая на нем желто-зеленое свечение. В ноябре 1895 г. физик обнаружил, что трубка странным образом воздействует на соли бария.
        Завернутая в черную, светонепроницаемую бумагу, она заставляла барий светиться. Едва Рентген отключал трубку, как свечение солей пропадало. Тогда физик изготовил экран, покрытый солями бария, и стал наблюдать, как засвечивает этот экран трубка. Рентген предположил, что она испускает неизвестный науке род невидимых лучей. Ученый помещал на их пути различные предметы, чтобы по изменению светимости экрана сделать вывод об общих свойствах невидимого излучения. Оказалось, что X-лучи (икс-лучи), как назвал их экспериментатор, обладают высокой проницаемостью. Они задерживаются металлами, но свободно проходят сквозь бумагу, эбонитовую пластинку и многие другие материалы.
        Ради любопытства физик поместил на пути X-лучей собственную руку. Мягкие ткани оказались прозрачны для невидимого излучения, тогда как костная ткань была слишком плотной и не пропускала его. В результате кости дали тень на экран, и физик увидел четкое изображение скелета собственной кисти. Своему открытию Рентген посвятил статью «О новом роде лучей», опубликованную на всех европейских языках и знакомую ученым всего мира. К физику пришла слава. Обнаруженное им излучение назвали в его честь, он стал первым ученым, удостоенным Нобелевской премии. Однако физик боялся этой славы и до конца жизни отказывался называть X-лучи рентгеновскими.
        Рентген не смог объяснить природу лучей, поскольку не знал о существовании электронов. Хуже того, ученый настойчиво отрицал сам факт их существования, когда элементарные частицы были обнаружены Томсоном спустя год после открытия Рентгена. Известно, что физик строжайше запретил помощникам и ученикам произносить само слово «электрон» в своей лаборатории. Как бы то ни было, лучи эти возникают из-за резкого торможения электронов на аноде разрядной трубки. Человек не способен видеть излучение потому, что оно имеет слишком короткую длину волны.
        X-лучи позволили физикам открыть и изобрести немало интересного. В первую очередь следует упомянуть рентгеноструктурный анализ. Рентгеновское излучение обладает основными свойствами светового, а потому способно испытывать дифракцию, т. е. огибать небольшие препятствия и создавать при этом сложный теневой рисунок. Но поскольку оно коротковолновое, то, следовательно, подходящие для него препятствия являются микроскопическими, имеющими размеры молекул. Таким образом, при помощи рентгеновских лучей можно просвечивать молекулярную структуру вещества, проводя точнейший анализ, называемый рентгеноструктурным.
        Другое достижение, которым физика обязана открытию Рентгена, - рождение новой науки - рентгеновской астрономии. В космосе находится множество источников этого невидимого излучения, о природе которых астрофизики могут судить благодаря специальной технике, оснащенной детекторами X-лучей. Наиболее впечатляющим открытием рентгеновской астрономии стало обнаружение звезд класса нейтронных пульсаров, периодически испускающих в пространство X-лучи. Природа этих объектов до конца не изучена, астрофизики не могут с полной уверенностью сказать, что именно заставляет эти светила вести себя столь необычным образом. Однако у ученых появилась рабочая гипотеза.
        Пульсар, вещество которого давно подверглось нейтронизации, является частью двойной системы, куда входит нормальная плазменная звезда. Нейтронизация вещества означает, что все электроны пульсара под действием его же собственной гравитации были вжаты в протоны, которые в результате утратили заряд и превратились в нейтроны.
        Почти все сверхплотное вещество такой звезды состоит из сильно сжатых нейтронов. Пульсары обладают большой массой и перетягивают на себя часть плазмы от своей соседки - нормального светила. Поэтому на поверхность нейтронной звезды, как на гигантский анод, обрушивается поток электронов, испускающих рентгеновские лучи, которые регистрируются астрономическими приборами.
        В числе наиболее значимых изобретений, основанных на использовании невидимых лучей, следует назвать устройства, благодаря которым было сформировано одно из главных направлений в медицинской диагностике - рентгенография и ее разновидности. Первый медицинский рентгенографический снимок был выполнен первооткрывателем X-лучей. Речь идет о фотографии кисти Рентгена. Этот снимок физик сделал самостоятельно.
        Первым человеком, который понял необходимость широкого применения просвечивающей рентгеновской техники в медицинской диагностике, была жена и помощница П. Кюри, одна из пионеров исследования радиоактивности М. Склодовская-Кюри. В годы Первой Мировой войны (1914 -1918 гг.) она старательно убеждала врачей и правительства европейских стран применять невидимые лучи при обследовании раненых бойцов и всячески способствовала постройке и внедрению в практику рентгеновских аппаратов.
        Под ее руководством были разработаны ранние модели медицинских рентгенографических установок. Склодовская-Кюри лично обучила работе на этих аппаратах 1500 врачей, положив начало медицинской рентгенографии. В нашей стране первые аппараты рентгеновской диагностики появились в 1947 г. Это были установки под серийным номером РУМ-2, разработанные руководителем физической лаборатории Московского рентгенорадиологического института В. В. Дмоховским.
        Существенным недостатком рентгена является наличие т. н. теней на снимках. Они создаются органами и тканями, изображения которых накладываются на пленку и перекрывают собой основное изображение. Поскольку и теневые проекции, и проекция нужного участка организма лежат в одной плоскости, то получается смесь из нечетких, размытых образов. Естественно, современная рентгеновская аппаратура и уровень квалификации специалистов почти не оставляют возможности неправильного прочтения снимков.
        Тем не менее во многих случаях расшифровать рентгенограмму оказывается очень трудно. Нетипичные же ситуации приводят к тому, что снимки вносят путаницу. Чтобы наверняка освободиться от этого недостатка рентгеновского аппарата, английский физик Г. Хаунсфилд в 1960-х гг. решил применить для обработки информации, получаемой с помощью рентгена, компьютеры. В то время вычислительная техника оставляла желать лучшего, поэтому Хаунсфилду пришлось ждать 10 лет, пока не появятся технологии, отвечающие поставленной задаче.
        В 1972 г. ученым был построен первый в мире компьютерный томограф. Изображение в этом диагностическом аппарате не отпечатывается на фотопластинке, а строится самим компьютером. Первоначально электронный мозг подбирает в соответствии с программой ширину рентгеновского луча, которая должна равняться ширине исследуемого слоя тканей. Затем рентгеновская трубка вращается вокруг человека, луч проводит сканирование выбранного участка. Компьютер измеряет плотность разных тканей и органов по интенсивности поглощения луча, после чего преобразует принятый детектором сигнал в цифровое сообщение.
        На основе построенной цифровой модели исследуемого слоя воссоздается изображение. Так, послойно, можно рассмотреть любой орган. Толщина слоев такова, что никаких теней от соседних тканей не наблюдается. Качество послойных томографических снимков мало чем уступает качеству и наглядности анатомических срезов. Но если последние можно получить лишь посредством препарирования трупа, то томограф дает картинку организма живого человека.
        Вводя контрастные вещества во внутренние органы, врач может наблюдать на экране аппарата даже протекание ряда физиологических процессов. Наиболее впечатляют исследования мозга, т. к. ученые благодаря томографии получили уникальную возможность наблюдать чуть ли не течение мысли.
        Великий философ античности Аристотель (IV в. до н. э.) задавался вопросом о чувствах и символах. Мыслит ли человек символами (словами и числами) или же облекает в символическую форму естественные ощущения? Философ заключил, что ощущения первоначальны и главенствуют, а слова и прочие символы изобретаются позднее. С Аристотелем многие не соглашались. Томография показала, что мудрец был прав: человек изначально обрабатывает информацию через органы чувств.
        Впрочем, посредством компьютерных томографов можно исследовать и мертвые тела. Это делается тогда, когда анатомическое препарирование может повлечь за собой серьезные повреждения. Например, ученые долгое время не могли исследовать знаменитые египетские мумии, поскольку снятие бинтов превратило бы тела в прах. Томограф выявляет ткани любой плотности и создает цветное изображение, на котором четко видны границы органов и пр.
        Нашумевшее обследование на компьютерном томографе мумии царской певицы и танцовщицы Табес позволило открыть немало секретов бальзамирования, а также особенностей физиологии и патофизиологии людей, живших около 3000 лет назад. Так, по нарушениям костной ткани черепа удалось узнать, что 30-летняя женщина умерла от опухоли мозга.
        Три тысячелетия - не предел для компьютерной томографии. Три миллиона лет назад жил «бэби из Таунга» - пятилетний малыш, череп которого был обнаружен в 1925 г. известным палеоантропологом P. Дартом в ЮАР. Тогда, в 1920-е гг., находка не вызвала ни малейшего интереса. Теперь череп ребенка тщательно исследуется на томографах. И неудивительно, ведь малыш является переходным звеном между обезьяной и человеком.
        Деление ядра
        Атомное ядро является самой массивной и наиболее важной частью атома. Он обладает какими-либо постоянными химическими свойствами и остается неделимым до тех пор, пока цело его ядро. Ядерные силы, связывающие заряженные частицы, которые входят в его состав, позволяют атому не расщепляться под любым химическим воздействием и иметь валентные свойства.
        Ясно, что эти силы в масштабах своего действия колоссальны. Таким образом, атомное ядро насыщено огромной энергией. Выделение ее из ядер для промышленных нужд было освоено человеком всего около 50 лет назад и стало одним из крупнейших достижений науки. Оттого прошедшее столетие называют атомным веком.
        Открытие радиоактивности
        Поскольку атом химически неделим, то о его расщеплении никто не мог даже думать до конца XIX в. Лишь в 1896 г. француз А. Беккерель открыл природное явление, впоследствии названное радиоактивностью. В то время ученый мир был потрясен сообщением В. Рентгена об обнаружении невидимых X-лучей, обладающих высокой проникающей способностью. Многие физики увлеченно занимались их исследованием и ставили разнообразные опыты для получения новых сведений о возможностях загадочных лучей.
        Беккерель также проявил живой интерес к открытию Рентгена и даже выдвинул собственную гипотезу о природе X-лучей. По мнению Беккереля, невидимое излучение возникает после длительного воздействия солнечных лучей на некоторые вещества. То есть рентгеновские лучи сходны в чем-то с люминесцентным свечением. Беккерель, пытаясь найти доказательство своей теории, ставил эксперименты, в которых использовал, наряду с прочими веществами, урановую соль.
        Содержание опытов сводилось к следующему. Физик освещал вещество солнечным светом, после чего прятал его в темное место, предварительно подкладывая под вещество фотопластинку, завернутую в черную бумагу. Используя урановую соль, Беккерель заметил, что фотопластинка оказывалась неоднократно засвеченной. Следовательно, уран источает рентгеновские лучи.
        Ученый был уверен, что вынужденное излучение происходит под воздействием солнечного света, однако случай заставил его изменить свое мнение. Как-то раз эксперимент Беккереля был сорван пасмурной погодой. Несмотря на то что опыт был завершен раньше обычного и ученый не ожидал получить результат, он, тем не менее, решил положить урановую соль на фотопластинку. Та оказалась засвеченной точно так же, как если бы соль весь день пробыла на ярком солнце. Беккерель заключил, что испускание невидимых лучей солью нельзя увязать с люминесценцией.
        Обнаруженное физиком природное явление заинтересовало многих других ученых, в т. ч. супругов Кюри. Мария Склодовская-Кюри, исследовавшая феномен вместе со своим мужем Пьером Кюри, предложила назвать вновь открытое явление радиоактивностью (от латинского «radis» - луч). В 1898 г. супруги-ученые открывают два других, помимо урана, радиоактивных элемента - радий и полоний.
        Обычно радиоактивность связывают не с ядерными превращениями и распадом элементов, а с процессом испускания некоторыми веществами жесткого, проникающего излучения. В реальности разница между двумя явлениями значительна. Испускание радиации, как вид невидимого излучения, действительно всегда сопровождает радиоактивный распад всех нестабильных ядер элементов. Жесткое излучение является в данном случае формой высвобождения колоссальной атомной энергии.
        Но точно такое же излучение может возникать и в ходе термоядерных реакций, т. е. реакций, связанных не с распадом, а с синтезом ядер. Поэтому заменять понятие радиоактивности термином «радиация» нельзя. Физики различают три вида активного излучения, обозначаемые первыми тремя буквами древнегреческого алфавита - альфа-, бета- и гамма-лучи. Выявить разновидности радиации удалось после того, как упоминавшийся ранее английский физик Э. Резерфорд применил магниты для изучения свойств невидимых лучей.
        В магнитных полях радиоактивное излучение отчетливо распадается на три потока, поскольку некоторые слагающие лучи частицы имеют электрические заряды. Альфа-частицы представляют собой положительно заряженные ядра гелия. Они отклоняются в магнитном поле в сторону отрицательного полюса. Бета-частицы являются свободными электронами, которые несут отрицательный заряд и потому отклоняются в сторону плюсового полюса.
        Гамма-лучи образованы т. н. гамма-квантами, или фотонами, с очень высокой энергией и большой частотой. Заряда эти частицы не несут, поэтому в магнитном поле не отклоняются. Таким образом, сплошной поток радиации можно разбить в магнитном поле на три самостоятельных потока - один прямой (гамма-лучи) и два отклоняющихся к противоположным полюсам (альфа- и бета-лучи).
        Излучение разной природы имеет неодинаковую проникающую способность. Альфа-частицы остановить сравнительно легко, поскольку они малоактивны и слишком тяжелы. Плотный слой вещества или магнитное поле легко гасят такое излучение. Электроны гораздо более активны, они имеют сравнительно высокую проникающую способность. Большой подвижностью обладают гамма-кванты, которые остановить чрезвычайно трудно. Гамма-лучи способны вызывать у человека серьезные поражения клеток и тканей на молекулярном уровне. Именно поэтому радиация крайне опасна.
        Защитой от радиации является слой поглощающего ее вещества. Это может быть любое вещество, однако мощность слоя для разных материалов будет неодинакова. Слой металла, как правило неактивного свинца, толщиной в 6 см способен почти полностью заглушить поток радиации от солей урана. Бетонная защита должна иметь толщину около 10 -15 см. Грунт (почва) в качестве препятствия для гамма-лучей подбирается средней мощностью до 60 см. Естественно, приведенные здесь цифры усреднены.
        Резерфорд совершил немало других открытий, которые легли в основу ядерной физики. Кроме обнаружения ядерных реакций и видов радиоактивного излучения, весьма существенным достижением ученого следует назвать открытие закона радиоактивного распада. Резерфорд установил, что нестабильные атомы распадаются со строго определенной периодичностью и в постоянной доле от первичного количества.
        Период распада постоянен и неизменен для каждого вида атомов. У разных видов он может насчитывать от долей секунды до миллионов лет. Скорость распада ядер и образования новых видов атомов и элементов постоянна, она не зависит ни от каких внешних сил и воздействий, за исключением ядерных. Период распада не особенно важен в физике, поскольку ученым гораздо удобнее иметь дело с т. н. периодом полураспада. Так называется временной интервал, за который распадается примерно половина всего количества ядер.
        Период полураспада является постоянной величиной. В течение первого периода происходит распад 1/2 от общего количества, за последующий период - распад 1/2 от исходного или 1/4 от первичного, по прошествии еще одного периода - соответственно 1/2 и 1/8 части. Что же произойдет, когда останутся, скажем, 4 атома? Наверное, по истечении очередного периода полураспада останутся 2 атома, хотя вполне вероятно, что 3 или даже 1. Так происходит потому, что закон радиоактивного распада имеет вероятностный характер. Он справедлив, когда количество атомов чрезвычайно велико и возможность распада именно половины из них наиболее вероятна. Но в радиоактивном веществе по прошествии периода полураспада никогда не распадается ровно 50 % ядер. Однако сколь угодно приближенное к 50 % количество распавшихся атомов вполне реально. Например, если по прошествии периода полураспада распадется из 1 млрд атомов 500 000 100 ядер, то в этом не будет ничего удивительного. Напротив, такое количество распавшихся ядер наиболее вероятно и ожидаемо.
        Изобретение атомных реакторов
        После открытия А. Беккерелем и супругами Кюри явления радиоактивности Э. Резерфорд догадался использовать излучение, рождающееся во время этого процесса, для воздействия на атомы вещества. Наибольший интерес у физика вызвало альфа-излучение. Облучение вещества альфа-частицами вызывает в нем ядерные реакции, сопровождающиеся перерождением атомов (их распадом, превращением в новые атомы) или испусканием атомами нового излучения.
        Возможность проводить ядерные реакции так, как задумано, привлекла к себе внимание ученых. В 1934 г. вслед за Резерфордом проводят опыты по бомбардировке альфа-частицами разных веществ Ирен Жолио-Кюри (дочь супругов Кюри) и ее муж Фредерик Жолио-Кюри. Они обнаруживают, что алюминий, бор и магний после облучения альфа-частицами приобретают радиоактивные свойства. Новое физическое явление называют в науке искусственной радиоактивностью. За его открытие супругам Жолио-Кюри в 1935 г. была присуждена Нобелевская премия.
        В 1938 г. немецкими физиками О. Ганом и Ф. Штрасманом проводятся исследования радиоактивного деления ядер урана. Ученые наблюдают активное выделение нейтронов в ходе реакции. Тогда же Ф. Жолио-Кюри принимается за исследование деления урана. На основе открытия Гана и Штрасмана он выдвигает предположение, что в уране возможны цепные реакции. Дальнейшие работы Жолио-Кюри подтвердили справедливость этого предположения.
        Рождающиеся при делении ядер урана нейтроны начинают бомбардировать соседние ядра и вызывать их деление. В результате распад атомов продолжается стихийно. Очередная группа распавшихся атомов порождает нейтроны, разрушающие еще одну группу атомов, также порождающих при распаде нейтроны. При этом выделяется колоссальное количество энергии, которая может быть использована человеком.
        Цепные реакции не нуждаются в контроле, они протекают самопроизвольно. Однако этот стихийный процесс приводит к высвобождению такого количества энергии, что ее выделение происходит взрывообразно. На этом принципе основано устройство атомной бомбы. Ядерная энергетика деления развивает технологии контролируемого расщепления атома, при которых возможно получение не разрушительной, а созидательной энергии для нужд промышленности.
        Первым ученым, который добился успеха, занимаясь такими исследованиями, был итальянский физик Э. Ферми. Он изучал особенности процесса искусственного деления ядер урана и, в частности, установил, как обойти границу величины критической массы. Под критической массой радиоактивного вещества понимается такое его количество, когда цепная реакция перестает быть управляемой.
        В атомной энергетике достижение ядерным горючим критической массы очень опасно, поскольку реактор превращается в бомбу. Первый в мире реактор был запущен под руководством Э. Ферми в США в 1942 г. В нашей стране в 1946 г. был запущен первый в Европе атомный реактор. Его запуском ведал основатель отечественной ядерной физики И. В. Курчатов.
        Управляемый термояд
        Термояд - сокращенное, полуофициальное название термоядерного синтеза. Энергию атомного ядра можно до бывать не только путем расщепления, но и посредством синтеза тяжелых ядер, когда рождение новых продуктов сопровождается выделением радиоактивного излучения и колоссального количества тепла. Видимо, эпоха анализа (разложения) в науке и технике безвозвратно уходит в прошлое. Ее сменяет эпоха синтеза. Человек больше не разрушает, а старательно создает из простого сложное. Мы объединяем вещества в лекарства, пластмассы, волокна, сплавы и многое другое. Теперь человеку предстоит создавать новые атомы, чтобы обеспечить себе доступ к практически безграничным источникам энергии.
        Открытие реакции термоядерного синтеза
        Реакции синтеза атомных ядер были предсказаны рядом физиков в 1910-х гг. на основании данных изучения радиоактивного превращения элементов. Парадоксально, но термоядерный синтез был осуществлен в 1919 г., т. е. почти за 9 лет до искусственного проведения реакции радиоактивного распада. Впервые в искусственных условиях его провел Э. Резерфорд: он столкнул на большой скорости гелий с азотом и получил водород и тяжелый кислород. Спустя 5 лет ученый успешно провел в своей лаборатории синтез сверхтяжелого водорода трития из ядер тяжелого водорода дейтерия.
        Ядро гелия (альфа-частица) обладает удивительной способностью воздействовать на атомы. Еще сильнее расшатывает любое атомное ядро дейтрон - ядро дейтерия. Бомбардируя этими ядрами более тяжелые изотопы, удается вызвать интенсивные реакции, приводящие к синтезу новых элементов. Средневековые алхимики мечтали превращать неблагородные металлы в золото. Наука показала, что химическим путем этого добиться невозможно, но каждый специалист по ядерной физике знает, что превратить свинец или ртуть в золото реально. Нужно воспользоваться колоссальными возможностями термоядерного синтеза.
        Сегодня уже найдены формулы реакций, обеспечивающих получение золота из любого неблагородного металла. К сожалению, искусственный синтез элементов чрезвычайно труден, поэтому золото гораздо выгоднее добывать из земных недр. Чтобы сталкиваемые ядра вступили в реакцию, им нужно сообщить значительную скорость, которая напрямую зависит от энергии летящих частиц. Резерфорд осуществил лишь простейшие реакции, значительно разогнав ядра. Более сложные реакции потребуют или невероятно длительного разгона, или создания температур от 50 до 100 млн °С.
        Задолго до того, как ученые столкнулись с проблемами осуществления термоядерного синтеза, английский физик А. Эддингтон выдвинул смелое предположение, что звезды горят благодаря протеканию в их недрах термоядерных реакций. До того времени ученые выдвигали самые невероятные гипотезы для объяснения причины свечения звезд.
        Ближе всех к истине подошел Г. Гельмгольц. Он предположил, что разогревание недр звезды объясняется ее сильным гравитационным сжатием под действием собственного тяготения. Однако в таком случае запаса теплоты такому светилу, как Солнце, хватило бы максимум на 1,8 млн лет. Гипотеза Гельмгольца была справедлива лишь отчасти. Звезда действительно разогревалась под влиянием гравитационного сжатия до температуры в недрах около 80 млн °С, при которой в ее веществе «зажигались» термоядерные реакции, поддерживающие дальнейшее ее свечение.
        В 1937 г. американскому ученому Г. Бете удалось доказать протекание термоядерных реакций на Солнце, следовательно, Эддингтон оказался совершенно прав. Звезды действительно черпают свою колоссальную энергию из протекающих в их недрах реакций термоядерного синтеза. Если бы наше Солнце состояло из угля или бензина, то выгорело бы за 1000 лет. Более калорийным и долговечным топливом, чем бензин, может служить только ядерное горючее. Все звезды горят благодаря реакциям синтеза ядер, поэтому астрофизическое изучение этих космических объектов значительно продвинуло ядерную физику вперед.
        Сегодня известно, что небесное тело может зажечься и самостоятельно светиться, если оно имеет массу свыше 0,2 солнечной. Во Вселенной обнаружены огромные звездообразные тела, т. н. коричневые карлики. Их масса приближается к 0,2 солнечной, но она недостаточна для поддержания высокой температуры внутри недр. Тем не менее новорожденные звезды могут иметь самые разные размеры и массы, главное, чтобы количество вещества превышало минимальную отметку.
        От размеров и массы светила зависит ход термоядерных процессов в его недрах и его дальнейшая судьба. Маленькие светила, чьи масса и размеры значительно меньше солнечных, относятся к красным карликам и эволюционируют медленно. Проходят десятки миллиардов лет (до 80 млрд), прежде чем красные карлики превратятся в новый тип звезд. За это время звезды остальных типов успевают сильно измениться. Крупные бело-голубые светила, значительно превосходящие Солнце, сжигают запас водорода стремительно, за неполные 1,5 млн лет.
        После этого они начинают постепенно разрушаться, но сначала проходят стадию пульсирующих звезд. У пульсаров в недрах горит гелий, и его неравномерное горение вызывает частые колебания внешнего газового слоя и, соответственно, периодические изменения светимости. Такие звезды то увеличиваются, то уменьшаются; поток лучистой энергии из их недр то возрастает, то идет на убыль. В силу этой причины звезды такого рода названы переменными. Астрономам известны несколько классов пульсирующих переменных. Это красные гиганты, красные сверхгиганты и желтые гиганты (лириды).
        Как понятно из названий светил, их линейные размеры крайне велики и часто в сотни раз превосходят солнечные. Самая большая звездная масса, точно измеренная астрономами, в 50 раз превосходит солнечную. В таких звездах протекает синтез углерода из гелия. Некоторые красные гиганты не только производят углерод, но и активно выпускают его в мировое пространство. Попадая в открытый космос, углерод быстро застывает, превращаясь в сажу. Она на время окутывает звезду сплошным покрывалом, заметно снижая блеск светила.
        Постепенно, по мере выгорания гелия, пульсации переменных становятся все более аритмичными и напряженными. Процесс заканчивается грандиозным взрывом. Газовая оболочка звезды разлетается в пространстве, образуя горячую туманность. Ядро взорвавшейся звезды, которую земной наблюдатель назовет новой или сверхновой, превращается под действием сжатия в нейтронную звезду или, предположительно, в «черную дыру». Подобная нейтронная звезда обнаружена на месте сверхновой в созвездии Тельца. Сейчас там находится Крабовидная туманность, сложенная остатками взрыва.
        Впрочем, конец не всегда наступает после полного выгорания гелия. Звезда может, исчерпав свои запасы гелия, перейти на синтез более тяжелых элементов, чем углерод. Известна звезда, вырабатывающая кремний и бурно извергающая его в космос. Кремниевый газ стремительно застывает, превращаясь в песчинки. Вокруг звезды возникает зона, полная настоящего песка.
        Солнцеподобные светила почти не взрываются и не превращаются в нейтронные звезды или «черные дыры». Солнце после угасания начнет терять газовую оболочку. Она станет расширяться, поглощая планеты, а затем превратится в сферическую туманность. Ученые часто наблюдали такие туманности, с Земли они похожи на колечки сигарного дыма. В центре сферической туманности, называемой астрономами планетарной, останется сильно сжатое ядро звезды. Оно само станет звездой, поскольку будет светить за счет запасов тепловой энергии. Такие слабые светила называют белыми карликами.
        Изучение законов термоядерного синтеза принесло астрономам множество больших и малых открытий, касающихся не только звезд. Сегодня почти все космологические представления так или иначе затрагивают ядерно-физическую эволюцию мироздания. Сама Вселенная родилась в результате чудовищной силы взрыва мельчайшей частицы с поперечником 10^31^ см. Внутри этой частицы пребывала вся мировая материя, сжатая до плотности 10^95^ г/см^3^.
        Эпоха Большого взрыва, как называют пору возникновения Вселенной, характеризуется интенсивным синтезом простейших частиц из вакуума. Впрочем, сам по себе тогдашний вакуум резко отличался от нынешнего. Это было вакуумообразное состояние материи, предельно насыщенное энергией. Запасы энергии придавали материи температуру около 10 млрд С и возбуждали в вакууме огромные силы отрицательного тяготения. Оно вызвало ускоренное расширение пространства сразу во всех точках.
        Сверхгорячая расширяющаяся материя представляла собой т. н. «кипящий котел», в котором протекали бурные реакции синтеза за счет значительных энергетических запасов простейших частиц - протонов, электронов, антипротонов и позитронов. Антипротоны и позитроны являются античастицами, т. е. частицами с обратным знаком. Антипротон - это отрицательный протон, а позитрон - положительный электрон.
        Частицы и античастицы активно взаимодействовали друг с другом, самоуничтожаясь при этом. Их энергия переходила в фотоны, которые со временем заполнили всю Вселенную в виде холодного реликтового излучения. Но поскольку существовал небольшой избыток протонов и электронов перед античастицами, то нормальное вещество сохранилось и сложило облака космического газа. Постепенно, в процессе их уплотнения, в них образовались сгущения, ставшие звездами. В недрах звезд начался термоядерный синтез тяжелых элементов из водорода.
        Современная астрофизика и смежные с ней направления астрономической науки являются по сути дела ядерной физикой, «увеличенной» до космических масштабов. Вселенная служит гигантским термоядерным реактором и одновременно лабораторией, где происходят различные превращения вещества и рождаются невероятные лучи. Благодаря астрономическим наблюдениям с применением детекторов ядерных излучений физики могут как находить подтверждение старым гипотезам, так и совершать новые открытия.
        Удивительным кажется и другое. В самом начале главы приведены доказательства того, что внутри атома нет Вселенной, заполненной разумными обитателями. И действительно, космическое пространство внутри атомного ядра существовать не может. Однако атом, подобно мировому пространству, неисчерпаем. Углубляться в него можно бесконечно. В недрах атома царят физические законы, связанные с релятивистскими эффектами. Та же теория относительности описывает свойства пространства-времени Вселенной.
        Изобретена технология управляемого синтеза
        Ученые сразу же обратили внимание на перспективы применения термоядерного синтеза. Естественно, физики никогда не рассчитывали получить дешевое золото из меди или свинца. Но достаточно напомнить, что благодаря такому синтезу таблица Менделеева приобрела свыше 20 новых элементов, не встречающихся в природе. Их массивные ядра крайне нестабильны и существуют доли секунды. У многих из них еще нет названия. Перечень поименованных атомов заканчивается на 102-м элементе - нобелии. Устоявшимся и общепринятым можно считать название курчатовия (104). Предположительно, 105-й элемент сохранит за собой название нильсбория. Элементы с 106 по 110 остаются пока безымянными, да и их физико-химические свойства почти не изучены.
        Однако и изучение новых элементов не является главным движущим стимулом для ученых. Цели подчинения реакций синтеза гораздо более прозаичны и вместе с тем гораздо более важны. Синтез может послужить основой промышленной энергетики. Звезды расходуют свои запасы топлива в течение десятков миллиардов лет, одно наше Солнце горит уже порядка 5 млрд лет.
        Термоядерное топливо обладает огромным запасом энергии. Приближенные подсчеты показывают, что синтез ядер способен давать человеку в 10 млн раз больше энергии, чем сжигание химического горючего. Достаточно обеспечить реакцию всего 1 г ядерного топлива, чтобы заменить им Ют бензина.
        Обычный термоядерный синтез был осуществлен неоднократно при испытании маломощных водородных бомб. Современное ядерное водородное оружие является самым действенным средством уничтожения всего живого. Водородная бомба начинает действовать от атомного запала, вырабатывающего достаточное количество теплоты, чтобы практически мгновенно нагреть до высочайших температур горючую смесь дейтерия и трития.
        Реакция синтеза дейтрона и тритона приводит к высвобождению колоссальной энергии. Происходит термоядерный взрыв, который сразу же уничтожает все живое на огромной площади, многократно превосходящей площади самых больших городов планеты. Одной-единственной бомбы средней мощности вполне достаточно для полного превращения в руины таких гигантских мегаполисов, как Нью-Йорк или Токио.
        Но человечеству требуется не разрушительная, а созидательная энергия, которая будет давать электрический ток в дома и на заводы, двигать сверхскоростные поезда и космические корабли. Взрыв водородной бомбы является неуправляемой термоядерной реакцией, точно так же как взрыв обычной атомной бомбы является неуправляемой реакцией атомного деления. Человеку же требуется управляемый синтез легких ядер.
        Единственным препятствием для ученых на пути осуществления контролируемой реакции синтеза остается высокая температура «зажигания» горючего. В недрах звезд температура достигает 15 млн °С. Предполагается, что космические светила зажглись при температурах свыше 50 млн °С. Оптимальная же температура для проведения термоядерных процессов с точки зрения энергетики равна 100 млн °С. Именно до такой степени требуется нагреть смесь дейтерия и трития, чтобы с высокой эффективностью извлекать из начавшейся реакции тепловую энергию. Продуктами этой реакции являются ядра гелия и свободные нейтроны. Последними можно облучать литий для возобновления запасов трития. Что касается дейтерия, то его возобновлять необязательно, т. к. в природе он встречается в достаточном количестве (например, в морской воде на 6000 атомов обычного водорода приходится 1 атом дейтерия).
        Однако управляемая реакция подразумевает не только высокие температуры, но и удержание раскаленного вещества и беспрепятственное получение полезной энергии. В противном случае окажется, что установка поглощает гораздо больше энергии, чем выделяет. Любое вещество при температурах в несколько миллионов градусов переходит в плазменное состояние. Удержать его от немедленного рассеяния можно в магнитных полях. При этом необходимо изолировать плазму от внешней среды во избежание теплообмена. Физики подсчитали, что если плазма с плотностью 10^14^ ядер на 1 см^3^ заметно остудится за 1 с, то полезную энергию получить не удастся.
        Однако никакая теплоизоляция не поможет сохранять температуру плазмы приближенно постоянной. Плазма непременно прожжет изоляционное вещество и вырвется наружу. Наиболее активные частицы обязательно покинут магнитное поле. Скорость водорода внутри ионного газа плазмы при необходимой температуре равняется 1000 км/с. Следовательно, требуется удерживать плазму каким-то совершенно особым способом, создав для нее как бы магнитную ловушку. Впервые общая идея магнитной ловушки была сформулирована в конце 1940-х гг. отечественными физиками И. Е. Таммом, А. Д. Сахаровым и O. А. Лаврентьевым. Почти одновременно к сходным выводам пришел американский физик Л. Спитцер.
        С 1950 г. начались активные работы по проектированию устройства, технически воплощавшего магнитную ловушку. Первоначальной моделью такого устройства был прямотрон.
        Ему присвоили такое название потому, что он представлял собой прямую трубу (прямолинейную ловушку), в которой должны были разгоняться частицы. Конструкция прямотрона была несовершенной, т. к. длина такой трубы должна была равняться нескольким десяткам километров. Гораздо перспективнее оказался проект прямолинейной ловушки с магнитными «пробками» на концах. Они должны были отражать поток частиц плазмы, отбрасывая их в противоположную сторону. Длина «пробкотрона» составила бы менее 100 м.
        После того как была отвергнута и конструкция «пробкотрона», физики разработали замкнутую ловушку со сведенными вместе концами. Получился ускоритель-тороид, в котором плазма могла бесконечно долго разгоняться, двигаясь по кругу. Проблема удержания быстрых частиц была решена на основе работ И. Е. Тамма по теории электромагнитного поля. Чтобы частицы не смещались в замкнутом тороидальном магнитном поле, необходимо завить его силовые линии в спираль. Для этого требуется пропустить друг через друга два тока. Первый будет создавать магнитные силовые линии в форме окружностей, тогда как второй потечет по новым силовым линиям. В результате оба тока будут генерировать общее магнитное поле с силовыми линиями, закрученными спирально. Частицы плазмы внутри тороида будут двигаться не только вдоль замкнутых линий тороидального поля, но и описывать вокруг них спираль.
        В 1954 г. под руководством И. Е. Тамма была создана первая тороидальная электромагнитная ловушка для плазмы, получившая название «ТОКАМАК». Ее название представляет собой аббревиатуру, которая расшифровывается как «Тороидальная КАмера с МАгнитными Катушками». В названии подчеркнуто, что главным элементом конструкции являются катушки, создающие мощное, в несколько Тл (тесла), магнитное поле. За последующие годы ученым удалось построить еще несколько установок подобного типа, которые также были названы Токамаками.
        Эти катушки напоминают гигантские трансформаторы. Рабочая камера Токамака заполняется газом, а в катушках возбуждается магнитное поле. В результате пробоя под действием вихревого поля происходит усиленная ионизация газа в камере, отчего тот превращается в плазму. Возникает плазменный шнур, движущийся вдоль тороидальной камеры и разогреваемый продольным электрическим током. Магнитные поля катушек и плазмы удерживают шнур в равновесии в вакууме и придают ему форму, которая не дает шнуру касаться стенок.
        Ток используется для нагрева плазмы лишь до температуры не более 10 млн °С, для получения большей температуры необходимо применить другие методы. Кроме того, постоянно нагревать плазму током опасно, поскольку он создает собственное магнитное поле. Если оно превысит по силе поле катушек, то скорость движения плазменного шнура сильно увеличится и он, прорывая теплоизоляцию, будет касаться стенок. Поэтому дополнительный подогрев осуществляется посредством ультразвука, электромагнитных волн высокой частоты или введения (инжекции) в камеру пучков быстрых атомов.
        В современных Токамаках удалось получить температуру плазменного шнура около 200 млн °С. Этого более чем достаточно для проведения термоядерных реакций. Однако Токамак нельзя считать энергетической установкой. Он не вырабатывает энергию, а служит для проведения опытов и научных исследований. Это устройство является одним из сложнейших инструментов физиков. Работа на Токамаке напоминает генеральную репетицию перед выступлением - созданием энергетики синтеза.
        Ученые предполагают, что в будущем термоядерный синтез окажется гораздо более важным и нужным для человека, поскольку позволит нам зажечь искусственное Солнце, когда погаснет настоящее. Это катастрофическое событие случится спустя 5 млрд лет. Человечество должно к тому времени освоить контроль над термоядерными реакциями настолько, что бы не дать гаснущему Солнцу взорваться и погибнуть, погубив заодно жизнь на нашей планете. Следовательно, энергетика синтеза имеет одновременно гораздо более значимое будущее, чем может показаться на первый взгляд: ей суждено спасти обитателей Земли.
        На этом завершается еще один раздел, посвященный великим открытиям и изобретениям. А заодно закрывается в книге и тема физики. При всем уважении к заслугам этой науки нельзя не заметить, что другие дисциплины дали человеку не меньше благ и ценных знаний. Среди этих наук биология, химия, математика, геология и другие. Некоторые из их достижений настолько ошеломительны и обладают таким влиянием на все сферы деятельности человека, что не будет преувеличением сказать: образ жизни человечества есть результат чьих-то фантастических открытий.

9. Облик современного мира
        Наша эпоха отличается невиданной властью человека над природой. Властью, которая позволяет нам создавать новые виды растений и животных и получать вещества, не встречающиеся в природе. Другим свидетельством нашего безграничного могущества являются компьютеры, которые внедряются во все сферы общественной жизни и производства. Однако именно эта неограниченная власть человека приносит ему наибольшее количество проблем, главнейшей из которых на сегодняшний день является, пожалуй, угроза экологического кризиса. Понять причины нынешнего сложного положения человечества помогают открытия и изобретения, во многом повлиявшие на облик современного мира.
        Манипуляции жизнью
        Каждому из нас доводилось совершать досадные ошибки при письме, когда случайная замена в слове одной-единственной буквы (например, «О» на «И» в слове «кот») приводила к появлению принципиально иного смысла, а следовательно, и иного предмета, обозначаемого этим словом. К сожалению, в природе не происходит столь чудесных превращений котов в китов и т. п. На протяжении столетий люди вели скрещивание самых разных животных в надежде получить необычное потомство. Иногда это удавалось. Так появились, к примеру, лошаки и мулы, которые, однако, оказались бесплодны. Полноценное живое существо искусственно вывести не получалось, поскольку тому препятствовали законы наследственности. Со временем стало очевидно, что манипулировать жизнью возможно лишь при условии, что эти законы будут раскрыты.
        Открытие кода ДНК
        Итак, наследственность записана в каком-то виде, и эта запись скрыта внутри организма. Но что она собой представляет, оставалось для ученых загадкой. Путь к исследованию природы столь сложного явления был долог и сопровождался интереснейшими открытиями.
        Во второй половине XVII в. английский ботаник P. Гук, впервые применивший микроскоп для исследования растительных и животных тканей, с удивлением обнаружил, что они сложены загадочными образованиями. Последние напоминали многочисленные пустоты, своеобразные ячейки, которые Гук окрестил клетками.
        В дальнейшем удалось установить, что клетки не являются полостями, но содержат в себе жидкость и мельчайшие структурные элементы - органоиды. В 1838 -1839 гг. в результате глубоких исследований клеток ботаник М. Шлейден и физиолог Т. Шванн создали клеточную теорию - учение о клеточном строении организмов. Ученые провозгласили, что все живые существа состоят из клеток. Все, что происходит внутри организма микроба, растения или животного, является результатом работы клеток. Вот только микробы состоят из одной-единственной клетки, а большинство растений и животных многоклеточные.

«Ячейки» растут, делятся, преобразуют питательные вещества в энергию, порождают движение, участвуют самым непосредственным образом в размножении. Из половых клеток рождаются новые существа, которые растут и развиваются по тем же законам. Биолог P. Вирхов добавил к этим утверждениям еще один принцип: всякое существо происходит из клетки, неклеточная жизнь невозможна. Сегодня ученые открыли тысячи неклеточных форм живой материи - вирусов и вироидов, однако эти создания способны к жизнедеятельности и размножению только внутри клеточной среды.
        Постепенно стало очевидным, что носителем наследственности выступает либо сама клетка, либо ее часть. И только в первой половине XX столетия американскому ученому Моргану в результате длительного наблюдения за делением клеток удалось доказать, что носителями наследственности являются особые элементы клеточного ядра, т. н. хромосомы. В каждой клетке человека, за исключением половых (гамет), содержится по 46 хромосом.
        В гаметах хромосом в 2 раза меньше, поскольку зачатие нового человека происходит при слиянии женской яйцеклетки и мужского сперматозоида, когда объединяются до целого половинчатые хромосомные наборы. Такие наборы названы учеными кариотипами. Кариотипы разных растений и животных сильно отличаются по числу хромосом и их размерам. Оттого скрещивание между существами с различными кариотипами в большинстве случаев или невозможно, или оно дает неполноценных гибридов. Так, у собаки имеется 78 хромосом, у шимпанзе - 48, у плодовой мушки - всего 8, у кукурузы - 20.
        Облик и строение каждого существа определяются особенностями кариотипа. Хотя хромосомы одного вида одинаковы, они содержат в себе разные вариации генов. Ген - единица вещества наследственности, отвечающая за определенный признак или конкретную функцию организма. Количеству генов соответствует количество признаков и функций. Вот почему люди, имеющие одинаковые кариотипы, различаются по цвету глаз, волос, кожи, комплекции, форме лица, дактилоскопическому рисунку на пальцах и прочим признакам.
        В 1953 г. состоялось долгожданное открытие. Ученые Ф. Крик и Д. Уотсон сумели проникнуть внутрь хромосом и извлечь из них вещество наследственности. Им оказалась дезоксирибонуклеиновая кислота, или сокращенно ДНК. Несмотря на свое название, ДНК не имеет ничего общего с обычными кислотами, а представляет собой жидкий кристалл, отдаленно похожий на те, что применяются в индикаторах электронных часов. Молекула ДНК представляет собой невероятно длинную цепочку, сложенную двумя спиралями из сахара и фосфора. Каждая спираль напоминает контур винтовой лестницы.
        Обе спирали оборачиваются одна вокруг другой и объединяются с помощью химических «мостов», в качестве которых выступают аденин, гуанин, тиамин и цитозин (А, Г, Т, Ц). Последовательность четырех перечисленных веществ уникальна, она несет в себе закодированную информацию о синтезе белков и прочих клеточных веществ. Отдельный блок такой информации, т. е. смысловой отрезок ДНК, является единичным геном.
        Когда этот ген включается, клетки начинают производить определенные белки, что приводит к запрограммированным биологическим процессам. ДНК служит матрицей для производства веществ, обеспечивающих протекание различных процессов в организме и само существование организма. Записать формулу гена можно как АГЦ-ТТА-ЦТГ-… и т. д., т. е. в виде любой кодирующей последовательности.
        Расположение информации на молекуле нуклеиновой кислоты имеет следующий вид: САЙТ - БЕЛОК НОМЕР ОДИН («формула») - САЙТ - БЕЛОК НОМЕР ДВА. Под сайтом понимается участок узнавания, по которому организм отличает одну запись от другой. Впрочем, у некоторых вирусов, разновидностей т. н. бактериофагов, запись генетического кода очень неразборчива, в ней одни гены наслаиваются на другие: БЕЛОК НОМЕР ОДИЕЛОК НОМЕР ДВАЛОК НОМЕР ТРБЕЛОК… и т. д.
        Размеры генов ничтожны. Если собрать все ДНК из клеток взрослого человека, то молекулы свободно уместятся в наперстке. Но при этом объем хранимой веществом наследственности информации колоссален. Если сравнить молекулу ДНК с перфокартой, то количество информации на первой напрямую зависит от протяженности молекулы. Ученые вычислили суммарную длину всей человеческой ДНК и получили астрономическое число - 60 млрд км! То есть если вытянуть ДНК из всех клеток человека в мировом пространстве в виде тончайшей нити, то эта нить протянется от Земли в 10 раз дальше, чем находится от нас планета Плутон.
        Вещество податливо и после должной обработки приобретает те свойства, которые выгодны человеку. Дезоксирибонуклеиновая кислота - не исключение, она также способна видоизменяться, если правильно на нее воздействовать. А это означает возможность преобразования живой материи. Генетики (ученые, занимающиеся секретами наследственности), поставили перед собой несколько задач. Если эти задачи удастся без проблем решить, то человечество сможет управлять генетическим кодом и создавать новые виды организмов.
        Первой задачей является выделение гена. Его нужно найти на бесконечно длинной двойной нити ДНК и вырезать оттуда. Это весьма сложно сделать не только технически, но даже теоретически: отрезок молекулы выбирается из десятков тысяч схожих отрезков. Затем необходимо научиться синтезировать ген, получать его искусственным путем в лаборатории в любых масштабах.
        Эта мера вовсе не излишняя. Допустим, сельское хозяйство нуждается в овощах, содержащих животные жиры. Для этого необходимо внедрить овощам соответствующий животный ген. Но сначала его требуется найти в клетках животных и выделить оттуда, а затем размножить. В единичном экземпляре ген не представляет интереса. С одним геном нельзя провести серию экспериментов, нельзя обеспечить гибридизацию в масштабах всего растениеводства.
        То есть первоначально выделенный отрезок ДНК будет использован в качестве матрицы, на основе которой произведут множество аналогичных генов, которыми можно будет смело пользоваться в исследовательских и хозяйственных целях. Третьей задачей является модификация гена. Полученный отрезок кислоты необходимо предварительно переработать, изменить его размеры и свойства.
        На завершающей стадии от ученых требуется научиться внедрять генетический материал в чужие клетки и активировать его. Ген может попасть в такую область, где не станет функционировать. Вот почему необходимо, во-первых, точно разместить его на новом месте и подсоединить к уже имеющемуся генетическому материалу, а во-вторых, заставить там полноценно работать. Реализовать поставленные задачи оказалось возможным лишь в последние годы, когда была создана генная инженерия.
        Изобретена технология генной инженерии
        Генная инженерия представляет собой направление биологической науки, возникшее на стыке генетики, молекулярной биологии, биотехнологии, микробиологии, селекции и медицины. Эта область знания занимается разработкой способов управления генетическим кодом. То есть генная инженерия ищет пути внедрения в клетку новых генов и получения при этом положительного эффекта.
        Возможности генной инженерии безграничны. Некогда античные философы любили аллегорически изображать все нереальное и противоестественное в виде мифического козлоконя. В наши дни генетическое конструирование организмов теоретически допускает существование козлоконей и прочих химерических животных - кентавров, сирен, грифонов, базилисков и т. п. Требуется лишь правильное оперирование с наследственным материалом. Однако это не является истинной целью генной инженерии.
        На сегодняшний день задача генетического конструирования заключается в выведении штаммов бактерий (дробянок) с запрограммированными свойствами. Хотя задача выглядит весьма скромной, она многое дает для человека. Никакой химик пока не способен состязаться с бактериями в синтезе органических соединений. Как правило, эти соединения не представляют пользы для человека, а иногда и вредны: выделения болезнетворных бактерий токсичны.
        Посредством генного конструирования можно заставить дробянок производить те вещества, которые чрезвычайно необходимы человеку. Бактерии размножаются в столь большом количестве, что их продукцию можно получать в колоссальных объемах. Главное - вывести новую разновидность (штамм) бактерий и создать условия для их размножения. В 1980 г. начался промышленный выпуск соматотропина, синтезированного бактериями с измененной генетической конституцией.
        Бактерией-производителем выступила хорошо известная ученым кишечная палочка. Прежде соматотропин, необходимый для лечения детской карликовости (нанизма), получали из гипофиза мозга скончавшихся людей. Естественно, препарата катастрофически не хватало. Как, впрочем, не хватало и инсулина, получаемого из печени забитого скота. Потребность в инсулине, используемом при лечении диабета, была удовлетворена лишь на 7 %. Генетики получили штамм кишечной палочки, выделяющий инсулин, и начиная с 1982 г. это вещество производится в промышленных масштабах.
        Для того чтобы достичь подобного результата, потребовалось «скрестить» бактерию (!) с человеком, поскольку только в человеческом организме есть гены, ответственные за производство нужной формы соматотропина и инсулина. Эти гены были вырезаны из последовательности человеческой ДНК и внедрены в ДНК бактериальную. Микроорганизм стал синтезировать человеческие гормоны. Сегодня ученые знают уже наверняка, что бактерии в состоянии синтезировать все.
        Естественно, наука не собирается останавливаться на достигнутом. Когда изменение генотипа бактерий окажется весьма простым делом, то начнутся работы над сельскохозяйственными растениями и животными. Отдельные изыскания в этой области ведутся уже сейчас. К числу недавних открытий следует отнести обнаружение гена, удваивающего число клубней картофеля, и пр. Генная инженерия позволит выводить принципиально новые сорта культурных растений и породы домашних животных.
        Ввести генетический материал в чужую клетку можно несколькими способами. Поколение трансгенных животных получается при внедрении генов в яйцеклетку матери с помощью микроинъекций. Но этот метод применим не всегда.
        Ученые имеют дело со столь мелкими объектами, что манипулировать ими посредством любых инструментов невозможно. Вот почему генетики применяют для проведения операций по внедрению отрезков ДНК молекулярные векторы.
        В качестве последних выступают вирусы, плазмиды и космиды. В природе постоянно происходит перенос генетической информации от одного организма другому посредством вирусов, которые распространяют инфекцию. Получается, что достаточно заразить подопытные клетки вирусами, несущими нужные гены, как эти гены окажутся внедренными в наследственный материал клеток. Вирусы самой природой устроены таким образом, чтобы внедрять свою ДНК или ее аналог РНК (рибонуклеиновую кислоту) в чужой генетический аппарат.
        Впрочем, нельзя сказать, чтобы вирусам отдавалось предпочтение. Выбор вектора зависит от условий эксперимента. Плазмиды не так давно использовались чаще всего. Под плазмидами понимаются особые, кольцевые молекулы ДНК в бактериальных клетках.
        В целом методы генной инженерии выглядят следующим образом. На начальной стадии, носящей название рестрикции, идет операция по извлечению нужного гена из человеческой или любой другой ДНК. На молекулу химически воздействуют ферментами, которые отщепляют необходимый отрезок. Ферменты влияют на нуклеиновую кислоту таким образом, что у отрезка остаются «липкие» концы. Это означает, что они легко присоединятся к любой другой молекуле ДНК. Затем следует процедура лигирования. На этой стадии бактериальную плазмиду рассекают ферментами и вклеивают в нее готовый ген-отрезок. Затем плазмиду склеивают веществом лигазой, чтобы она опять приняла кольцевую форму.
        Третий этап носит название трансформации. Измененная плазмида (или рекомбинантная) вводится в бактериальную клетку. Это сравнительно нетрудно, поэтому ученые и пользуются плазмидными векторами. Бактерии часто обмениваются между собой генетической информацией с помощью плазмид. Этот процесс заменяет им половое размножение. К сожалению, плазмиды проникают внутрь далеко не всех бактерий. Вирусы более эффективны в этом отношении, поскольку при переносе информации они инфицируют 100 % клеток (бактерий).
        Бактерии с измененным генетическим аппаратом называются трансформированными. Они впоследствии размножаются, в результате чего образуется колония генетически одинаковых организмов. Новый генотип оказывается растиражирован. Полученной колонии присваивается название клона. Поскольку клон является конечным продуктом генной инженерии, то само создание и тиражирование трансформированного наследственного материала таким путем носит название клонирования. Завершает процедуру клонирования скрининг - отбор клонов. Из множества трансгенных колоний выбирается одна, отвечающая всем требованиям. Осуществляется такой отбор за счет меток колоний радиоактивным веществом.
        Генетическое конструирование включает в себя, помимо создания трансгенных существ, и другие приемы манипуляций над наследственным аппаратом. Среди этих методов числится искусственный мутагенез. Он менее впечатляет, чем операции с применением плазмид, однако весьма эффективен. Искусственный мутагенез сводится к усиленному воздействию на гены в клетках животного или растения активных веществ-мутагенов, ультрафиолета, рентгеновских лучей и прочих факторов, вызывающих изменения генов. Мутагенез протекает под контролем ученых, а потому приводит к возникновению существ с измененной в лучшую сторону наследственностью.
        Искусственное сырье
        В природе встречается порядка 4 млн химических соединений. Это, безусловно, большое количество. Если хранить 100-граммовый образец каждого из них в специальном сейфе какой-нибудь лаборатории, то общая масса этих образцов составит 400 т. Однако если не внимательно изучить все химические справочники, то выяснится, что науке известны свойства порядка 15 млн веществ, т. е. почти в 4 раза больше! Откуда взялись лишние 11 млн соединений, понятно без лишних пояснений. Вещества, не встречающиеся в природе, человек получает самостоятельно, совершенствуя технику проведения реакций. Рост численности новых веществ происходит преимущественно за счет синтеза полимерных соединений, возможности которого практически безграничны.
        Открыто строение полимеров
        Слово «полимер» в переводе с греческого языка означает многокомпонентный, многосложный. Химики так называют соединения, образованные более простыми веществами. Слагающие компоненты выполняют ту же роль в огромной молекуле полимера, что и звенья в цепи. В науке такие звенья носят название мономеров. Они могут встречаться изолированно, как самостоятельные простые соединения.
        Но после объединения при определенных условиях в молекулу полимера мономеры утрачивают многие прежние свойства, в результате чего образуется совершенно новое вещество. Полимеры чрезвычайно широко распространены в природе. Среди них в первую очередь следует назвать высшие полисахариды из группы сложных углеводов. Полисахариды по праву следует считать наиболее типичными органическими соединениями.
        Одна только целлюлоза, синтезируемая растениями, составляет порядка 25 % от суммарной биомассы Земли, т. е. от общего веса живого вещества биосферы. Полимерная молекула-цепочка целлюлозы состоит из мономеров-звеньев, в роли которых выступает простой сахар глюкоза. Глюкоза является моносахаридом. Все полимеры из группы сложных углеводов сложены моносахаридами. Как правило, любая гигантская молекула образована 5 или даже 6 видами моносахаридов, но известны полимерные вещества, которые сложены, как целлюлоза, только одним видом мономера. В первом случае углеводные полимеры носят название гомополисахаридов, а во втором - гетерополисахаридов.
        Пектиновые вещества, заполняющие мякоть ягод и фруктов и благотворно влияющие на пищеварение, также относятся к полисахаридам. Эти вещества известны малому кругу людей, в основном тем, кто занимается промышленными технологиями изготовления мармеладов и желе. Если продолжить тему питательных веществ, то необходимо упомянуть крахмал.
        Он входит в состав картофельных клубней, зерен кукурузы и прочих злаков, а также содержится в стеблях, семенах и луковицах многих других растений. Этот полимер сложен всего двумя видами мономеров: моносахаридами амилопектином и амилозой. Крахмал прекрасно известен каждому, он относится к наиболее полезным и необходимым пищевым продуктам и содержится в таких изделиях, как хлеб и крупы.
        Полисахариды активно взаимодействуют с белками и принимают участие во многих жизненно важных физиологических процессах. Иммунитет, свертывание крови, жировой обмен, оплодотворение яйцеклетки и многие другие важные процессы жизнедеятельности организма осуществляются благодаря этим полимерам. Полисахариды играют важную роль в промышленности. Наиболее существенна для народного хозяйства целлюлоза, применяемая при изготовлении целлофана, вискозы, бумаги, эфиров целлюлозы.
        Помимо полимерных углеводов в природе встречаются и прочие виды супермолекул. Они тоже связаны с живым веществом, поскольку только живое способно производить столь сложные соединения. Оттого природные полимеры чаще всего называют биополимерами (от греческого биос - «жизнь»). Ранее уже назывались такие полимеры. Это белки, представляющие собой огромные молекулярные цепочки из аминокислот.
        Размеры белков значительны, равно как и велик спектр выполняемых ими функций. Молекула белка гемоглобина из группы глобинов весит в 3000 раз больше молекулы этилового спирта. А масса молекулы мышечного белка миозина в 10 000 раз превосходит массу спиртовой молекулы. Простейшие белки являются цепочками из нескольких сотен мономеров, как правило, 200 -300 аминокислот. Поэтому нет ничего удивительного в том, что белковые молекулы называются в химии макромолекулами (гр. макрос - «очень крупный»).
        Большие полимерные белки являются полипептидами, поскольку аминокислоты объединяются в длинные цепочки за счет особого рода химической связи, т. н. пептидной. Белки выполняют огромное количество функций, это рабочие молекулы нашего организма. Ученые называют их самыми удачными нанороботами. Белки защищают организм, слагают собой клетки, транспортируют вещества, ускоряют химические реакции и выполняют множество другой разнообразной работы.
        Самыми известными естественными полимерами нужно назвать нуклеиновые кислоты, о которых подробно рассказано в настоящей главе в разделе, посвященном наследственности. Молекула ДНК является носителем генетической информации. Считывать эту информацию помогает другая нуклеиновая кислота, называемая РНК. Все нуклеиновые кислоты невероятно велики, степень их полимеризации чудовищна.
        Под степенью полимеризации химики понимают количество мономеров, образующих одну молекулу. Масса одной-единственной молекулы ДНК примерно в 1 млн раз (а иногда и в 10 млн раз) превосходит массу молекулы этилового спирта. Длина такого исполинского полимера как минимум в 1000 раз больше длины самых крупных белковых молекул. Мономерами этого гиганта служат вещества нуклеотиды. Полимерное строение нуклеиновых кислот было открыто в ходе генетических исследований 1944 -1953 гг. Вещества оказались одними из самых поздних классов биополимеров, описанных учеными. Все остальные классы были изучены задолго до того.
        Само открытие биополимеров произошло в середине XIX в. После успешного синтеза Ф. Велером в 1828 г. мочевины начались активные биохимические исследования. Полимером, открытым Т. Шванном в 1836 г., оказался фермент желудочного сока пепсин, представляющий собой пептидную цепочку из 327 аминокислот. Затем, уже во второй половине XIX столетия, биологи и химики открывают пептидную связь, сцепляющую пепсин и белки (Э. Фишер), а также получают начальные сведения о структуре белков, углеводов и жиров. Биохимические исследования оказались во многом плодотворными благодаря открытию причин брожения Л. Пастером, Э. Бухнером и Ю. Либихом.
        Разработка технологий получения синтетических материалов
        После подробного изучения основных представителей биополимеров химики поставили перед собой задачу попытаться синтезировать хотя бы одно из таких веществ. Промышленность была крайне заинтересована в подобного рода материалах. Например, хорошо было бы получить искусственную резину взамен редкого каучука. Кроме того, в природе имеется много простых соединений, которые практически не используются. Они могли бы послужить мономерами для крупных молекул, более необходимых в хозяйстве и обладающих массой полезных свойств.
        Поскольку полимерные цепи образуются за счет химической связи между атомами углерода в соединениях, содержащих непременно водород, то синтез макромолекул возможен на основе простейших углеводородов. Ученых заинтересовали алкены, которые охотно соединяются друг с другом, образуя внушительный гомологический ряд. Начинается этот ряд с элементарного этилена, состоящего из двух групп CH^2^. За ним следует пропилен, формула которого уже гораздо сложнее: молекула включает в себя 3 углеродных атома. Бутен и трансбутен содержат по 4 атома углерода в своих молекулах, пентен - 5 углеродных атомов.
        Продвигаясь по гомологическому ряду нетрудно, т. о., заметить нарастание углерода в молекулах. Это означает, что простые алкены в качестве мономеров охотно вступят в химическую реакцию с образованием макромолекул. Этот процесс синтеза химики нарекли реакцией полимеризации, но добиться ее осуществления никак не удавалось. Лишь в 1884 г. отечественный химик Г. Г. Густавсон впервые осуществил неполную полимеризацию и получил олигомер этилена. Олигомер является полимером крайне малой массы и с очень низкой степенью полимеризации.
        Примитивный полимер Густавсона резко отличался от этиленового газа. То была вязкая и мутная жидкость, отдаленно напоминающая техническое масло. Затвердевать полимер не мог, но химики уже думали о том, какое замечательное вещество получат, если доведут реакцию до конца. Твердый полимер удобно применять в целях промышленного выпуска самых разнообразных изделий. Впервые синтез макромолекул на основе газовых мономеров удалось осуществить англичанам на рубеже XIX -XX столетий.
        Английские ученые использовали при получении вещества высокое давление, превосходящее 1 млн Па (в 1000 раз выше атмосферного). Синтетический продукт чудесным образом отличался от исходного материала. Взамен газа в руках ученых оказалась восковидная масса, которая была сравнительно прочной, легкой и очень эластичной. Гибкий воск назвали полиэтиленом, т. е. множественным этиленом.
        Трудно подсчитать, какое количество мономеров входит в состав полиэтилена, т. к. одна молекула отличается от другой. Число их чрезвычайно велико. Однако не следует думать, будто молекула не имеет конца. Конечно, при благоприятных условиях она могла бы тянуться до бесконечности. Именно в таком беспредельном виде и записываются формулы всех полимеров. Однако на самом деле каждая макромолекула имеет два окончания, где находятся какие-то атомы, служащие пограничными отметками. У полиэтилена в роли таких пограничных маркеров выступают атомы водорода.
        Популярность вещества стремительно росла, а химики испытывали новые синтезы. В 1939 г. произошло знаменательное событие в истории промышленной химии. Из полиэтилена был изготовлен изоляционный слой для телеграфного кабеля, который проложили на дне Атлантического океана. Стало очевидным, что возможности нового соединения почти безграничны (как и его молекулы!). Кабели, провода, волокна, пленки, покрытия, баллоны воздушных шаров и дирижаблей и многое другое можно было успешно изготавливать из синтетического вещества.
        Однако первоначально полиэтилен добывать было невероятно трудно, да и стоил он дорого. Лишь в Германии был освоен сравнительно простой способ получения больших количеств полиэтилена в промышленности. Но в годы Второй Мировой войны одно-единственное предприятие по выпуску ценного вещества было разрушено. Несмотря на это, уже в послевоенные годы во многих странах работы по дешевому и несложному синтезу этого вещества возобновились и завершились победой ученых.
        С середины 1950-х гг. реакцию полимеризации этилена научились осуществлять на индустриальных предприятиях при невысоких давлениях и температуре в пределах +100 °C. Сегодня из алкенов путем полимеризации получают массу других необходимых веществ. Тефлон обладает большой устойчивостью к высоким и низким температурам, а также отличается большой химической инертностью.
        Воздействовать на тефлон могут лишь немногие вещества. Это в основном расплавленные натрий и калий, с которыми полимер вступает в реакцию. Тефлоновые волокна используются для изготовления одежды, с которой легко удаляются грязь, пятна и пыль.
        Поливинилхлорид является продуктом реакции полимеризации хлористого винила. Он очень устойчив к разным воздействиям, но при этом легко окрашивается. Из него получают пластмассы, идущие на изготовление пленок, клеенок, плащей, электрической изоляции. Полистирол добывается путем полимеризации стирола. Его используют для разных нужд, но чаще всего как сырье для легких пластмасс (пенопластов).
        Одним из наиболее примечательных синтетических полимерных материалов следует считать капрон (или нейлон). Его история увлекательна и полна неожиданных поворотов. Это шелковистое волокно, обладающее водоотталкивающими свойствами, впервые удалось получить химикам одной из американских фирм в начале 1930-х гг. Таким образом, капрон оказался в числе самых первых синтетических веществ. Следует напомнить, что полимеры из этилена в то время получали с большими трудностями, а элементарный полиэтилен ценился на вес золота. Производство же капрона было сравнительно легким.
        Промышленники верили в большое будущее новооткрытого вещества. Возник вопрос о том, какое название ему дать. Был объявлен конкурс, в ходе которого было предложено более 350 наименований, из которых специалистам по маркетингу, входящим в состав жюри, понравилось оригинальное и благозвучное слово «nylon», т. е. нейлон. Для этого названия характерны краткость, эффектность, приятная «скользкость», указывающая на свойства материала.
        В русском языке за данным материалом почему-то закрепилось иное название - капрон. Немцы же предпочли именовать его дедероном. Однако оба названия являются производными от первоначального. Изготовители первого синтетического волокна ввели в употребление суффикс «-он» («-лон»), который в дальнейшем послужил для создания названий следующих поколений искусственных материалов полимерной природы.
        Впоследствии появились ксилон, перлон, крепон, дакрон, а также поролон и многие другие. Все вещества, синтезированные по модели нейлона, получили в добавление к длинным химическим названиям промышленные и торговые наименования (марки), оканчивающиеся на стандартный суффикс «-он» или «-лон».
        Перечислять возможности применения полимерных соединений можно бесконечно долго, тем более что химики и техники постоянно находят новые сферы применения этих веществ. Поэтому далее будут рассмотрены исключительно композиты в качестве наиболее интересных видов синтетических полимерных веществ.
        Композиционные материалы представляют собой объединение из нескольких синтетических веществ, причем не все из них имеют полимерную природу. Ученые при создании этих веществ руководствовались тем, что металлические сплавы обладают более выгодными свойствами, чем чистые металлы. Например, использование чистого железа в большинстве случаев невыгодно. Зато сталь, особенно нержавеющая, применяется в промышленности невероятно широко. Если объединение металлов дает такие замечательные материалы, значит, можно попробовать получить смесь из полимеров.
        Ожидания не обманули ученых. Полученные в результате такого смешения композиционные материалы (их называют еще композитными сплавами) обладали совершенно новыми качествами, добиться которых в случае с чистыми полимерами было невозможно. В композитах синтетические вещества улучшают и дополняют желаемые свойства друг друга. Наиболее распространены в наше время композиты, включающие синтетические упрочняющие волокна. Такие волокна, к которым относятся, например, стекловолокно и похожие вещества, повышают прочность материала. Волокна армируют композитную смесь.
        Без волокон композит отличался бы гибкостью, пластичностью и податливостью. Это тоже положительные качества, но они не всегда могут оставаться таковыми. Армированные композиционные материалы конкурируют по прочности с металлом, обладая при этом неоспоримыми преимуществами перед любыми сплавами. Композиты поглощают шумы, гасят вибрации, обладают завидной прочностью и долговечностью, слабо изнашиваются.
        Изделия из композитов, в отличие от металлической продукции, не намагничиваются, не поддаются коррозии, не нуждаются в смазке и прочих видах ухода. Главное преимущество композитов перед металлом - их легкость. Композитные детали намного снижают вес техники, в которой они используются. Разработки по созданию устройств и деталей из новых армированных композиционных материалов ведутся в течение последних 20 лет, начиная с конца 1970-х - начала 1980-х гг.
        В связи с быстрыми темпами развития автомобилестроения одними из наиболее перспективных изделий из композитных сплавов становятся автомобильные колеса. Поэтому привлечение в эту сферу промышленности принципиально новых материалов представляется особенно заманчивым. Инновации касаются не только колес, однако здесь старания техников и химиков увенчались успехом, наиболее заметным для автомобилистов.
        Дело в том, что композитные колеса, получаемые из сплава полиэстера и винилэстера, значительно облегчены (на 2 кг легче алюминиевых) и обладают лучшими ходовыми качествами при аналогичной прочности. Как известно, изобретение колеса состоялось свыше 6000 лет назад. Разумеется, вторично изобрести колесо нельзя. Зато вполне реально его усовершенствовать.
        Завершая рассказ о полимерах и их роли в жизни человека, конечно же, нельзя не вспомнить о т. н. разовых изделиях, без которых невозможно себе представить современную жизнь. Достаточно напомнить, что легкость получения полимерных материалов, главным образом пластмасс, позволила сформироваться в 1960-х гг. новой экономической культуре - культуре разовых изделий.
        Все началось с авторучек «Бик», после которых уже появились зажигалки, автоматические карандаши, фломастеры, пластиковая посуда, одноразовые шприцы и т. д. Основателем новой культуры потребления - мира товаров одноразового пользования - является предприниматель Марсель Бич. Он разработал концепцию товара, который исправно и качественно служит положенный срок, не причиняя неудобств и не угрожая безопасности человека, а затем выбрасывается.
        Идея была великолепна, поскольку большинство людей предпочло пользоваться разовыми изделиями, вместо того чтобы тратить время и деньги на ремонт обычных товаров. Авторучки «Бик» впервые появились в 1957 г. Вся разовая культура базируется на полимерных материалах, т. к. товары-однодневки получают преимущественно из пластмасс.
        Исследуется информация
        Информация представляет собой одну из наиболее важных сторон жизни, она является главной характеристикой структурной сложности материи. Это определение, конечно же, нельзя назвать исчерпывающим, абсолютно точным. Поэтому для глубокого понимания природы этого явления необходимо его подробное рассмотрение.
        Открытия информатики
        Все физические тела, окружающие человека, сложены материей. Даже бесконечный космический вакуум представляет собой особую форму материи. Формами материи являются время, пространство, энергия, физические поля и излучения. Эти формы взаимодействуют одна с другой, превращаются друг в друга, образуют разнообразные комплексы, в которых протекают всяческие процессы.
        Данные комплексы объектов и форм материи со всеми сопутствующими природными процессами названы системами. Оценить в полной мере работу любой системы можно посредством всего одной-единственной величины - сложности. Сложность описывает характер взаимодействий в системе, ее структуру, количество входящих объектов, количество энергии, если это требуется.
        Системы могут быть разнообразны в зависимости от того, что конкретно мы рассматриваем. Существуют транспортные, экономические, аграрные, живые, технические и прочие системы. Одними из наиболее сложных можно назвать системы компьютерных сетей, телефонные сети и спутниковую связь. Эти системы имеют большее число пользователей. В них задействована ультрасовременная техника, которая объединена по особым правилам в сети, охватывающие половину земного шара.
        Но если сравнить сложность мировой телефонной сети со сложностью головного мозга человека, то оказывается, что техника в этом смысле значительно уступает. Кора мозга включает в себя 17 млрд нервных клеток (нейронов), между которыми проведено свыше 1 трлн связей. Это позволяет мозгу выполнять операции, с которыми не справятся все сети мира. Таким образом, голова человека превосходит сложнейшие искусственные системы. К сожалению, этот потенциал не всегда разумно используется. Люди имеют привычку не задействовать до 90 % потенциала мозга.
        Величина, измеряющая сложность количественно и качественно, получила название информации. Характеристика сложности несет в себе подробнейшие сведения о системе. Поэтому информацией еще можно назвать совокупность сведений.
        Окружающий человека мир наполнен информацией. Все сколько-нибудь сложное и подлежащее описанию несет в себе информацию: код молекулы ДНК, макет газеты, система дорог области, параметры радиоволн, траектория космического корабля… Сложность живой природы, к примеру, оценивается в 10^50^ единиц!
        К слову, такая единица называется битом. Термин «бит» происходит из английского языка, где был образован на основе слов «binary digit» - двоичная цифра. Бит действительно двоичен. Он представляет собой минимум информации, т. е. кратчайший ответ на любой вопрос: «да» или «нет». Ответ «да» предполагает наличие какой-то простейшей информации, а потому обозначается в двоичной системе единицей. Ответ «нет» означает отсутствие информации. Но поскольку отсутствие сведений - уже сведение, то отрицательный ответ тоже имеет свое обозначение. Он отмечается нулем.
        Если говорить о сложности человеческого мозга, о которой зашла речь ранее, то окажется, что он в состоянии сохранить за всю жизнь человека до 100 трлн бит информации и свободно оперировать в памяти, мышлении и сознании 10 млрд бит информации. Наш мозг постоянно нуждается в новых сведениях. Поэтому человек, в течение длительного времени не узнающий ничего нового, начинает испытывать дискомфорт.
        Врачи установили, что этот эффект позволяет лечить курильщиков от никотиновой зависимости. Доказательством тому может служить один из проводимых экспериментов. Его суть заключалась в том, что курильщиков запирали в темных комнатах, предварительно завязав этим людям глаза и надев звукоизолирующие наушники. Полное отсутствие необходимых для мозга сигналов внешнего мира вызвало у испытуемых столь сильный информационный голод, что они затем с живым интересом выслушали лекцию о вреде курения, которую в других условиях сочли бы скучной. Сосредоточенное внимание к словам лектора способствовало более глубокому воздействию: почти все участвующие в эксперименте люди бросили курить.
        Жажда информации - это вопрос биологического выживания, поскольку чем лучше информировано живое существо (например, о пище, опасностях, условиях местности и т. д.), тем больше у него шансов уцелеть в борьбе за выживание. Человек уже давно не борется за выживание в природе, но наше существование немыслимо без развития духовной культуры и материального производства. Эти стороны человеческой жизни требуют непрерывного поступления новых сведений, позволяющих контролировать происходящие в обществе процессы.
        На планете проживают 6 млрд человек, которые для своих нужд ежегодно используют сотни миллионов тонн металла, пластмасс, горючих материалов. Мы за год перемещаем такую массу горных пород, что, если бы удалось загрузить ее в один поезд, этот состав протянулся бы на расстояние, превышающее расстояние от Земли до Луны в 1,5 раза! Каждый год промышленность выпускает десятки миллионов автомобилей и телевизоров, массу других товаров. Колоссальным размахом обладает литература, особенно периодическая печать. Чтобы все это контролировать, требуется с высокой скоростью собирать и обрабатывать информацию о различных видах хозяйственной деятельности человека.
        Столь острые потребности сформировались у человека сравнительно недавно. Сегодня многие историки склонны рассматривать процесс общественного развития по диаграмме Парето, т. е. как смену нескольких основных обществ. Первым было аграрное общество, в котором преобладало сельское хозяйство. Его сменило индустриальное, характерное для всех развитых стран, включая Россию. В таком обществе главным источником благ служит машинная промышленность.
        Со временем это общество сменится постиндустриальным, которое отчасти сформировалось в США и Японии. Для него характерно преобладание сферы сервиса в экономике. Каким будет следующее общество? Информационным, т. е. таким, хозяйственное воспроизводство которого всецело базируется на информационных технологиях.
        В таком обществе получат самое широкое распространение ЭВМ всех видов, достигнет невиданных размеров роботизация производства, решающую роль в социальных процессах будут играть компьютерные сети. На каждого человека в среднем будет приходиться один компьютер, два сотовых телефона и множество вспомогательной электроники. Отдельные признаки этого общества просматриваются уже сейчас.
        Развитие информатики, кибернетики и вычислительной техники невозможно представить без разработки теории устройства и работы вычислительной машины (компьютера). Эта теория базируется на принципах фон Неймана, названных так в честь их создателя. Теория включает в себя всего четыре принципа. Настоящий программируемый компьютер должен состоять из следующих устройств: а) арифметического логического устройства; б) запоминающего устройства; в) внешних устройств; г) устройства управления.
        Арифметическое логическое устройство отвечает за вычислительные операции, оно работает с логическими связями и математическими величинами. Запоминающее устройство представляет собой память счетной машины, куда записывается задача и откуда компьютер берет данные для проведения операций. В памяти записаны программы применения операций и программы решения задач. Каждая программа представляет собой алгоритм работы компьютера, записанный на машинном языке.
        Внешние устройства, или периферия компьютера, представляют собой приспособления для ввода и вывода информации. Эта техника обеспечивает эффективное сообщение между пользователем программ и прочих ресурсов компьютера и самим компьютером. Устройство управления, опираясь на записанные в памяти команды, координирует процесс выполнения программ.
        Современный персональный компьютер полностью соответствует принципам фон Неймана и включает в себя все перечисленные устройства. Арифметическое логическое устройство, память и устройство управления находятся в системном блоке ПЭВМ. Управление осуществляет центральный процессор, жесткий диск является запоминающим устройством.
        Логические операции выполняются при использовании ресурсов жесткого диска, а также чипов (микросхем). Внешние устройства представлены клавиатурой, «мышью», дисководом (инструменты ввода), дисплеем, принтером, графопостроителем, звуковыми колонками (инструментами вывода). Инструменты ввода-вывода информации весьма разнообразны, поэтому здесь перечислены только основные.
        Следует ли считать растущую компьютеризацию злом или благом? Сама постановка вопроса придает ему философский смысл. Во зло можно обратить что угодно. Культура пользования возможностями ЭВМ напрямую зависит от общей культуры человека. Если же говорить об экономическом и научно-техническом значении компьютеризации, то здесь необходимо непременно отметить несколько малоприятных моментов.
        Во-первых, человек всегда остается незаменим. Он никогда не ошибается в том, в чем допускает промахи ЭВМ. Человек в подавляющем большинстве случаев способен оценивать ситуацию гораздо более верно, чем машина, при нехватке исходной информации. В некоторых сферах деятельности человек-работник остро необходим. Во-вторых, ЭВМ не безгрешны, поскольку их создают обычные люди. Возможности компьютеров всегда ограничены знаниями и возможностями человека. Каждая вычислительная машина работает по алгоритму, составленному людьми. Если нет алгоритма работы, то компьютер не справится с порученным ему заданием.
        Наконец, человек может просто заложить в ЭВМ неверные исходные данные, которые проистекают от нашего собственного незнания. Горизонты науки вполне отчетливо различимы, особенно в таких дисциплинах, как космология, физика термоядерного синтеза, молекулярная биология, психология, физиология старения и т. п. Чего не знает человек, того не может знать компьютер. Правильно будет утверждать, что компьютер необходим лишь для решения задач, на которые человеку катастрофически не хватает времени. Ни больше, ни меньше.
        Стоит упомянуть в этой связи о самом примечательном достижении астрофизиков 1998 г. Учеными была построена на одном из 10 самых мощных в мире суперкомпьютеров трехмерная модель видимой части Вселенной. Насколько она справедлива? Ровно настолько, насколько полны сведения о космическом пространстве, добытые астрономами. Спустя два года были получены фотографии более далеких областей Вселенной, где замечены другие закономерности распределения небесных тел. Вполне вероятно, эти закономерности перечеркнут многое из того, что выдал по завершении работы суперкомпьютер.
        Изобретение компьютера
        Эволюцию вычислительной техники принято разделять на несколько этапов: домеханический, механический, электромеханический и электронный. Домеханический этап начался 40 000 лет назад, когда завершилось становление кроманьонца - человека современного типа. Определенно он умел считать и пользовался при этом первоначально пальцами и другими частями тела, а в дальнейшем палочками и камешками.
        О предыстории математических вычислений подробнее рассказано в первой главе книги. Наивысшим достижением домеханического этапа стало изобретение счетов. Прародителем данного инструмента был созданный греками и римлянами абак. В X в. н. э. китайцы изобретают обычные счеты, которые хорошо знакомы и современному человеку.
        Механический этап вычислительной техники берет начало в середине XVII столетия, а точнее, даже несколько ранее. Знаменитый французский физик Б. Паскаль сконструировал свою суммирующую машину в 1642 г. Почти одновременно работал над счетной машиной Шиккард. На рубеже XVII -XVIII вв. появляются первые арифмометры. Их создатель - немецкий философ и математик Г. Лейбниц. В XVIII в. арифмометры окончательно дорабатываются и почти в неизменном виде господствуют в математике как самые типичные счетные устройства, соперничающие с логарифмической линейкой и прочими приспособлениями.
        В 1824 г. появляется ткацкий станок Ш. Жаккара (Жаккарда), снабженный перфокартой. Перфокарта представляла собой квадрат картона с пробитыми на нем дырочками. Порядок дырочек определял последовательность действий вычислительной машины. Ее считывающее устройство, принимая перфокарту, опускало часть металлических стержней в отверстия в картоне. Остальные стержни не могли пробить картон и оставались в прежнем положении. В зависимости от комбинации отверстий менялась комбинация стержней, и устройство срабатывало иначе.
        История станка Жаккара поучительна. Она показывает, что прогресс - это не только создание нового, но и борьба с невежеством. Гениального изобретателя едва не бросили в воду жители его родного города Лиона, поскольку Жаккар якобы вознамерился оставить половину горожан без работы. Сам станок, будущие модели которого обеспечат столько рабочих мест и принесут процветание многим странам, сожгла разъяренная толпа.
        Итак, Жаккар первым употребил кодированную запись задачи. Независимо друг от друга Ч. Бэбидж и А. Лавлейс, опираясь на это изобретение, разработали алгоритмический язык формулировки и решения задач на машине, тем самым создав программирование. Лавлейс, дочь поэта Дж. Байрона, стала первым в истории человеком-программистом. В начале XIX в. темпы промышленного роста требуют создания все более совершенных счетных устройств, способных выполнять математико-логические операции.
        Первая настоящая аналитическая машина также была механической, она построена в 1834 г. и состояла из 50 000 деталей. Электромеханический этап развития вычислительной техники начинается с 1890-х гг. Электричество, совершив подлинный переворот в промышленности, вторгается в сферу механизированных расчетов. Предвестником старта электромеханических устройств, совмещающих в себе принципы механики и электротехники, становится табулятор Голлерита, сконструированный в 1887 г.
        История электронных вычислительных машин (ЭВМ) берет начало в середине 1940-х гг. В 1945 -1946 гг. в США была создана одна из наиболее прогрессивных ЭВМ того времени - машина «ENIAC» Эккерта и Маучли. Устройство в целом занимало огромную комнату, однако его мощность была очень мала. Сегодня такой мощностью обладает чип размерами в 6 мм. Первый настоящий электронный компьютер, работающий по принципу фон Неймана, был создан в 1949 г. Морисом Уилксом. Дальнейшее развитие компьютерной техники напрямую зависело от миниатюризации деталей.
        Большие электронные лампы, выполнявшие функцию вентилей (ключей) в счетных устройствах, были главной причиной, препятствующей созданию быстродействующих и небольших по размерам ЭВМ. Транзисторы появились в 1948 г. Эти радиодетали замещали собой большие лампы и даже совокупности ламп. В результате дальнейшей миниатюризации в 1965 г. удалось собрать первый в истории мини-компьютер, известный под маркой PDP-8. Его создателями были инженеры фирмы «Диджитал иквипмент». Их детище по размерам соответствовало холодильнику, однако в то время устройство считалось очень маленьким.
        Ровно 10 лет спустя после изобретения транзистора Дж. Килби изобретает способ размещения на небольшой пластинке из полупроводника сразу нескольких транзисторов и необходимых соединений между ними. Роль транзисторов выполняют мелкие кристаллики кремния. Готовое устройство было названо чипом (или микросхемой). Уже в 1959-м году основатель компьютерной фирмы «Интел» P. Нойс создает усовершенствованный вариант микросхемы - интегральную схему, положенную в основу вычислительной техники.
        Впервые ЭВМ на интегральных схемах выпускается в 1968 г., а уже в 1970 г. «Интел» изобретает интегральную микросхему, почти полностью вмещавшую в себя большое и сложное устройство компьютера, состоявшее из нескольких деталей, - центральный процессор. Произошла миниатюризация процессора, новая схема получила название микропроцессора. Год 1974-й принес очередной успех на пути к созданию идеальной ЭВМ. Создается микропроцессор 8080, послуживший эталоном для последующих поколений процессоров.
        На следующий же год был выпущен первый коммерческий компьютер, поступивший в продажу. Торговое название ЭВМ было «Альтаир-8800». Машинный язык для этого компьютера создавался специально У. Гейтсом и П. Алленом. С тех пор компьютеры стали очень популярны. В 1981 г. фирмой «IBM» создается коммерческий компьютер индивидуального пользования, пригодный для самого различного рода занятий человека - программиста-любителя, бизнесмена, ученого, обывателя. Новый компьютер вышел под маркой «IBM-PC», причем последние буквы означали «персональный компьютер». Броское и удачное название прижилось, с тех пор началась эпоха персональных микро-ЭВМ.
        Компьютерные технологии непрерывно совершенствуются и усложняются, особенно значительные изменения произошли в сфере периферии. Ранее уже рассказывалось о создании дисплеев на жидких кристаллах. К числу прочих оригинальных и полезных достижений следует отнести совершенствование клавиатур, которые создаются с учетом рекомендаций эргономики (медико-гигиенической науки о взаимодействии человека с техникой), а также развитие других устройств ввода информации и мультимедийных средств.
        Особенно впечатляют разнообразием новые модификации вводного устройства типа «мышь». Эту область уже давно в шутку окрестили «мышестроением», на основе обычной механической «мыши» построены трэкболл, инфракрасная, оптическая, оптико-механическая, лазерная «мыши» и «радиомышь». Лазерные мыши, напоминающие скорее летающие тарелки, способны сканировать поверхность, над которой скользят. Их особенно удобно использовать, когда под рукой нет коврика или любого другого предмета, по которому можно передвигать обычную мышь. По желанию пользователя лазерная «мышь» вводит в компьютер данные о том объекте, над которым парит. Естественно, летает устройство не само: его держит в руке пользователь ПК.
        Немногие даже сегодня знают, что конкретно представляют собой средства мультимедиа. Обычно под мультимедиа ошибочно понимают т. н. аудиокарточки, которые устанавливают в компьютер для прослушивания на нем музыки. Или же, в лучшем случае, мультимедийные средства обеспечивают владельцу возможность просматривать видео и фото, манипулируя по желанию картинкой (увеличивая, очищая, добавляя яркости, останавливая кадр и т. д). То есть мультимедиа воспринимаются как устройства, позволяющие сделать из компьютера разумный аудио- или видеомагнитофон.
        Такой взгляд, разумеется, неверен. На самом деле возможности мультимедиа гораздо шире. Сюда входят создание полноценной виртуальной среды, синтезирующей в себе ресурсы теле-, видео- и аудиоаппаратуры и позволяющей пользователю компьютера строить эту среду по своему желанию, полностью управлять ею, участвовать в ее внутренней жизни наподобие игрока компьютерных игр и, наконец, работать со спецэффектами. Впрочем, слово «наконец» верно лишь отчасти, поскольку перечень не ограничен данными пунктами. Они являются основными, а кроме них существует масса «второстепенных».
        Достигнуты и принципиальные новшества в сооружении периферийных устройств. Наиболее замечательной новинкой по праву можно назвать трехмерный цветной принтер. Это устройство действует по принципу чертежного графопостроителя, т. е. по заданной программе составляет макет. Но если графопостроитель выполняет чертежный макет на бумаге, то цветной принтер строит объемную модель, которую к тому же может и раскрасить в зависимости от желания пользователя. Авторство изобретения принадлежит фирме «Зед Корпорейшн», где и было создано удивительное устройство.
        Принтер загружается порошком и клеем, после чего послойно конструирует из порошка фигуру, внесенную в программу. Частицы порошка скрепляются клеевым веществом, наносимым по контуру, просчитанному компьютером. Линейные размеры готовой модели не превышают 20 -25 см. Сложность объекта не влияет на качество работы. Принтер выполняет любые макеты, в т. ч. содержащие внутренние детали. Порошок бесцветный, но в клей можно добавить пищевой краситель. Компьютер способен различать тысячи цветов и оттенков и благодаря этому сообщать разным частям макета разную окраску. Сложные объекты выполняются со скоростью 2 слоя в 1 мин, более простые и одноцветные - со скоростью 6 слоев в 1 мин.
        Персональные ЭВМ широко применяются в научных исследованиях, в частности для проведения психологического тестирования. Не так давно, в 2000 г., учеными были разработаны компьютерные тесты, которые позволяют выявить степень одаренности каждого человека и указать в чем именно проявляются таланты тестируемой личности. Психолог по результатам такого тестирования сможет найти причины, по которым человек не раскрыл себя и не реализовал свои способности. Таким образом, оказались сильно преувеличенными опасения касательно того, что компьютеризация вызовет отупение масс. Напротив, компьютеры, если использовать как покорных и надежных слуг, способны содействовать гармоничному развитию нашего интеллекта.
        Единство человека и природы
        Одним из величайших недостатков человека замечательный натуралист и писатель Дж. Даррелл считал то, что люди возомнили себя богами. По непонятной причине человек объявляет себя «царем зверей», стремится устанавливать собственные законы бытия и настойчиво отказывается признавать свое единство с органическим миром, хотя в действительности все мы являемся не только живыми существами, но и крупицами Вселенной - материальными телами, сложенными теми же атомами, что и окружающие объекты космического пространства. Все мы, подобно растениям, животным, минералам и др., пребываем в потоке энергии, движущейся в направлении роста энтропии.
        Открытия Дарвина и Вернадского
        Еще великий древнеримский анатом Клавдий Гален называл обезьян «смешными копиями людей» и, проводя вскрытия этих животных, изучал по обезьянам строение человеческого организма (вскрытия трупов людей были в античную эпоху запрещены). Позднее анатомы насчитали более 700 анатомических признаков, роднящих нас с миром животных.
        Подобно 8000 видов других млекопитающих, люди обладают волосяным покровом на теле, теплой кровью, четырехкамерным сердцем и т. д. Наши зубы также различаются на резцы, клыки и коренные.
        Главное свойство млекопитающих - вынашивание детенышей в собственном теле и питание их за это время через плаценту, а кроме того, вскармливание новорожденных детенышей молоком - присуще и человеку. Перечисленные факты указывают на то, что люди являются живыми существами, сходными со многими другими организмами. Уже в последние годы удалось изучить химический состав белков в теле человека, описать его кариотип, исследовать строение клеток. Оказалось, что на этом уровне мы не менее близки к животным. Генетически люди вообще мало чем отличаются от обезьян.
        Однако в течение длительного времени родство человека с живой природой упорно игнорировалось. Религиозные философы и богословы утверждали, что столь сложное создание, каковым является человек, не могло возникнуть само по себе. Его сотворил высший Создатель из «праха земного», т. е. столь же чудесным образом, каким произвел на свет всех прочих существ. Философы и богословы были совершенно правы, когда утверждали, что на пустом месте человек появиться не мог. Но именно в этом заключалась их крупнейшая ошибка.
        Человечество в наши дни воспроизводится вполне естественным путем. Рождение живого от живого обеспечивает связь поколений и даже связь видов. Механизмы этой связи впервые изучил английский натуралист Ч. Дарвин. Совершив кругосветное путешествие и собрав в результате обширный фактический материал, он смог обосновать происхождение видов под действием естественного отбора. Дарвин показал, что в природе постоянно протекает процесс эволюции - исторического развития органического мира.
        Тремя китами этого процесса являются наследственность, изменчивость и отбор. Изменчивость проявляется при передаче наследуемых признаков от поколения к поколению. Благодаря изменчивости потомство отличается от родительских особей. Самые выгодные отличия дают потомкам большие шансы в борьбе за существование. Таким созданиям проще спастись от стихийных бедствий, от холода, проще найти пищу и избежать гибели в столкновениях с врагами.
        Естественно, положительные изменения помогают животным находить наилучших партнеров в брачный сезон. В результате благоприятные генетические изменения передаются новому поколению и закрепляются в генотипе вида. К слову, сходные процессы происходят и в растительном царстве, т. к. растениям нужно бороться за место под солнцем, противостоять травоядным и выдерживать засушливые периоды. По мере накопления генетических изменений вид все больше преобразуется и в результате этого процесса превращается в новый вид, совершенно отличный от предшествующего.
        Палеонтологическая летопись сохранила до нашего времени в виде окаменелых останков следы существ, развитие которых шло разными путями эволюции. Среди окаменелостей можно найти как удачные, так и явно неудачные решения. Наглядным примером послужит историческое древо любого современного вида или семейства, в частности жирафов.
        Древнейшие жирафы появились на планете в верхнемиоценовую эпоху неогенового периода, т. е. порядка 20 млн лет тому назад. Это были обитатели тропических лесов и лесостепей, питавшиеся лесной растительностью и укрывавшиеся от хищников в непроходимых чащах. Ученым известно несколько форм, таких как палеотрагус, самотерий, альцицефалус, херсонотерий и др.
        Эти формы вымерли, когда во многих регионах планеты началось сокращение площади лесов и увеличение саванн. Кроме того, древнейшие жирафы были приспособлены к жизни в лесостепных условиях. Ни наступающая саванна, ни отступающий лес не давали им надежной защиты. Некоторые палеотрагусы и их сородичи попытались приспособиться к новым условиям. Часть животных перешла к сугубо лесному образу жизни. Размеры таких копытных уменьшились, чтобы обеспечить благоприятное существование в тропических дебрях.
        По прошествии нескольких миллионов лет на Земле появляются окапи - конечный продукт эволюции в данном направлении. Жирафы-окапи - реликтовые животные, которые сильно напоминают своих древних предшественников и даже немного примитивнее их. Сохраниться такие формы смогли лишь в дождевых лесах. Численность окапи невелика, что неудивительно, если учитывать, что вид плохо приспособлен к современной окружающей обстановке.
        Другое направление - увеличение массы тела. В саваннах появились буйволообразные жирафы сиватерии и вишнутерии. Кости этих гигантских животных впервые были найдены в Индии, отсюда необычные названия копытных, запечатлевшие имена индуистских божеств Шивы и Вишну. Сиватерии вымерли, поскольку не смогли конкурировать с настоящими буйволами и защищаться от хищников и первобытного человека.
        Последняя ветвь древних жирафов осваивала открытые саванны. Здесь выживали только самые крупные, длинноногие и длинношеие животные, которые могли защитить себя от хищников и достать листву с вершин высоких деревьев. Признаки выживших животных закреплялись в генах и передавались из поколения в поколение.
        Направление эволюции оказалось очень удачным, и порядка 1 млн лет назад в Африке появились камелопардалисы - современные жирафы. Эти животные гибнут при нападениях хищников лишь в молодом возрасте, тогда как взрослые обладают столь внушительными размерами и силой, что в состоянии забить копытами почти любого зверя-охотника. Длинная шея позволяет дотягиваться до кормовых ресурсов, которые не потребляют остальные копытные. Таким образом, у камелопардалиса нет конкурентов среди травоядных.
        Так происходит эволюция живой природы, в результате которой на Земле появился и человек. С возникновением трудовых коллективов первобытного человека, освоившего речь и пользование огнем, наш вид постепенно вышел из-под действия законов естественного отбора. Сегодня человек в большей степени подчиняется законам общества, однако, как показывают исследования, эволюция нашего вида все еще продолжается. Правда, это не большая эволюция, ведущая к образованию новых видов, но медленная микроэволюция. Она направлена на изменение некоторых генов и устранение ненужных их форм из генофонда человека.
        Признание наукой единства человека с природой имело огромное теоретическое значение, поскольку позволило совершить огромный шаг вперед многим биологическим дисциплинам. К сожалению, колоссальное практическое значение этого открытия было осознано с запозданием, только во второй половине XX столетия. Смысл единства живого вещества был открыт благодаря другому замечательному открытию, сделанному корифеем русской науки В. И. Вернадским, разработавшим учение о биосфере и ноосфере.
        До Вернадского никто из ученых не придавал деятельности живых организмов сколько-нибудь существенного значения. Великий Ч. Лайель, первооткрыватель геологической эволюции планеты и учитель Ч. Дарвина, первым показал, как видоизменялись организмы на протяжении миллионов лет, приспосабливаясь к переменчивым условиям среды. Однако и этот гениальный мыслитель видел в неразумных обитателях Земли лишь материал, который преобразуют слепые силы природы.
        Вернадский пришел к более серьезному обобщению, чем единство человека и животных. Он понял, что живая и неживая природа есть неразделимая целостность. Вещество, слагающее живые тела, столь же активно, как и вещество, слагающее тело планеты. Совокупность всех обитателей Земли - её геомерида - есть могущественная геологическая сила, сравнимая по масштабам деятельности с вулканизмом, выветриванием пород или прочими планетарными процессами.
        Прежде геологи изучали процесс изменения органического мира под влиянием внешних факторов, в первую очередь необратимых перемен в строении и геохимическом составе планетных оболочек - земной коры, атмосферы, Мирового океана. Вернадский понял, что если геомерида приспосабливалась к новым условиям, то составляющее ее живое вещество вступало в ответную реакцию. Это вещество активно впитывало в себя энергию и мертвую материю из окружающей среды и преобразовывало ее.
        Новое, биокосное вещество поступало в природу и дополняло измененные условия среды, формировало на их основе экологические ниши, подключалось к циклам биологических систем, поддерживая тем самым существование организмов. Жизнь, вступая в противостояние с мертвой материей, сама творила мир, необходимый для ее существования. Через пищевые цепи перекачивались вещество и энергия, приобретавшие иные, отличные от изначальных формы.
        Основу такой цепи представляют зеленые растения: микроскопический морской планктон, затем водоросли, лесные массивы и пр. Растения моря и суши поглощают из окружающей среды простейшие минеральные вещества, которые вымываются водой из горных пород. Благодаря солнечной энергии растительные организмы преобразуют минеральные соединения в белки, углеводы и прочие сложные вещества, содержащие углерод.
        Солнечный свет поддерживает процесс фотосинтеза, который позволяет растениям забирать углерод из углекислого газа, имеющегося в атмосфере, и насыщаться энергией, формируя сложные углеродные молекулы. Дополнительная энергия приобретается растениями в процессе дыхания - потребления кислорода и выделения взамен углекислоты. Фотосинтез протекает в таких невероятных масштабах, что в атмосфере Земли за всю историю растительного мира накопился порядочный избыток кислорода.
        Животные не обладают способностью синтезировать белки и углеводы, а потому вынуждены поглощать готовые соединения, питаясь растениями или промышляя охотой на своих травоядных сородичей. Трупы животных и растительные останки поедаются бактериями и грибами, которые перерабатывают белки и прочие органические соединения в неорганические, возвращая эти вещества обратно в окружающую среду. Круг замыкается.
        Живые существа всей планеты в процессе взаимодействия с окружающей средой ежегодно производят свыше 2000 млрд т органики и прочего белка, потребляя за это же время 2475 млрд ГДж (гигаджоулей) солнечной энергии, пропуская через себя 2500 млрд т воды, 100 млн т углерода. При этом живые существа выделяют в природу ежегодно 1550 млн т кислорода и до 5 млрд т отмирающей органики, которая присовокупляется к почвенным слоям и отложениям пород.
        На сегодняшний день масса горных пород, сформированных из остатков живых существ или биокосного вещества (известняков и других карбонатов, торфа, углей и других горючих ископаемых), составляет до 10^16^ т. В результате живое и биокосное вещество Земли образует сферу действия геомериды, область ее распространения и влияния на косную материю. Эта сфера проявления преобразующей работы организмов на земном шаре получила название оболочки жизни, или биосферы.
        Человек - такое же живое существо, каким являются миллионы других видов геомериды. Поэтому он представляет собой неотъемлемую часть биосферы. Вернадский назвал существование человечества функцией оболочки живой материи. Наш вид возник в результате длительного эволюционного развития биосферы именно тогда, когда для его появления была подготовлена почва, т. е. подходящая среда, способная обеспечить выживание человечества.
        Разумную материю можно назвать продуктом биосферы. По мере развития и усложнения последней возник качественно новый тип особым образом организованной материи, приспособленной к сознательной деятельности и мышлению. Внутренняя логика развития биосферы требует ее разрушения со временем и смены новой планетарной оболочкой, обладающей высокой геохимической активностью. Но такая смена означает вымирание человечества как вида и неизбежную гибель всего живого.
        Вот почему прогрессивное развитие общества направлено на максимальное освоение природных ресурсов и преобразование среды обитания. Переделка условий существования не столько поддерживает наше нынешнее существование, сколько создает базу для обеспечения существования и в дальнейшем. Биосфера будет видоизменяться, но не под действием разрушительных сил Земли и космоса. Фактором эволюции оболочки живой материи выступит хозяйственная деятельность человека, подчинившего себе планетарные процессы.
        Контролируя и направляя закономерные изменения в окружающей среде, человек сохранит и улучшит условия своего существования. Таким образом, в целом жизнь на Земле будет сохранена. Однако это дело далекого будущего. Пока же цивилизация своим неумелым управлением природой уверенно приближает наступление экологической катастрофы и выступает в роли деструктивного, а не созидательного фактора.
        Успешное преодоление современного экологического кризиса и устранение его последствий позволят человечеству благополучно преобразовать биосферу и сохранить ее в новой эволюционной форме - ноосфере, т. е., если следовать мысли Вернадского, оболочке разума, координирующей все природные процессы на Земле и в околоземном космическом пространстве.
        Изобретение экологических технологий
        Взаимоотношения природы и человека на протяжении всей нашей истории были довольно сложными, неоднозначными. Конфликты между развивающимся обществом и окружающей средой всегда происходили по вине человека и, как правило, заканчивались экологическими кризисами. Только научно-технический прогресс спасал человеческий род от вымирания. В целом наше покорение природы выглядело следующим образом. Доисторический человек на раннем этапе своего развития занимался преимущественно собирательством, реже промышлял охотой на мелких животных.
        Постепенное увеличение численности человечества привело к сокращению ресурсов промысла и собирательства и послужило причиной первого в истории экологического кризиса. Вряд ли стоит считать этот кризис антропогенным, т. е. вызванным человеком в ходе своей добывающей деятельности. Эксплуатация ресурсов не привела к сколько-нибудь существенным нарушениям в экосистемах, но заставила часть собирателей перейти на более активный промысел. Произошедшая за период 50 -10 тыс. лет назад биотехническая революция изменила способ взаимоотношения человека с природой.
        Охота становится главным средством добычи пропитания, начинается специализация первобытных племен по методам загона и прочих приемов лова, по видам промысловых животных, по типу охотничьих орудий. Многие племена на этом пути зашли в тупик и вымерли. Пагубным последствием усиленного сосредоточения на охоте, вылившегося в перепромысел крупных животных, стало полное истребление мегафауны.
        Мегафауной называется совокупность гигантских птиц и млекопитающих, обитавших на планете до нашей эры. В Евразии к мегафауне относят мамонта, ископаемого бизона, шерстистого носорога, дикую лошадь, пещерного льва, пещерного медведя, тура и других животных. В Северной Америке человек истребил бизона и саблезубого тигра, в Южной Америке - гигантского ленивца и глиптодонта, в Австралии и Новой Зеландии - дипротодонта, сумчатого волка, нелетающую птицу моа.
        Меньше всего пострадала фауна Африки, поскольку здесь животные успевали приспособиться к опасному двуногому соседу. Но и здесь по вине человека вымерли один вид львов, сиватерии (разновидность жирафов), гигантские лемуры и гигантские птицы эпиорнисы. Этот первый антропогенный кризис называется еще кризисом перепромысла. За ним последовали и другие. Человечество спасалось переходом к более разумным формам управления природой. Чтобы уцелеть после кризиса перепромысла, первобытные люди от охоты перешли к земледелию и скотоводству.
        Затем последовал кризис поливного земледелия, обернувшийся засолением почв и вынудивший человека перейти к богарному земледелию. Именно этот кризис, по мнению некоторых исследователей, стал причиной падения Вавилона.
        В Элладе и Древнем Риме начался кризис продуцентов, т. е. кризис сокращения лесной растительности. Дефорестация (исчезновение лесов) усилилась в средние века и повлекла за собой индустриальную революцию. Человек перешел на широкое использование металлов, горючих ископаемых и прочего минерального сырья.
        Последствия развития цивилизации в этом направлении проявились в наше время, когда разразился кризис загрязнения окружающей среды и нехватки минеральных ресурсов. Этот кризис называется еще кризисом редуцентов, т. е. бактерий и грибов, перерабатывающих отмирающие останки и играющих в природе роль мусорщиков. Человек производит столько ядовитых отходов, что нейтрализовать их не могут все бактерии Земли. Кроме того, многие производимые нами соединения являются синтетическими, т. е. искусственными, которые никогда не участвовали в геохимических круговоротах вещества в биосфере.
        В настоящее время человечество уже приняло ряд мер, направленных на предотвращение перехода кризиса в глобальную катастрофу, несущую гибель всему живому. Например, почти решена проблема нехватки минеральных ресурсов. Следует благодарить за это знаменитый Римский клуб - организацию, которая в 1970-х гг. занималась анализом экологической обстановки на планете и на основании проведенных исследований предрекла катастрофическое сокращение минерального сырья. Неутешительный прогноз заставил промышленников разрабатывать ресурсосберегающие технологии и перейти на более экономное и рациональное использование минерального сырья.
        Проблема антропогенного кризиса загрязнения не решена окончательно и по сей день. Для ее решения необходимо перевести промышленность на безотходное производство с замкнутым циклом, позволяющее полностью использовать исходное сырье. Экология, однако, предупреждает, что полностью безотходное производство невозможно. Если что-то берется из среды, то что-то должно поступать взамен. Однако почти не давать отходов может предприятие, где производственный цикл завершается правильно спланированной утилизацией веществ, легко перерабатываемых бактериями.
        В совокупности ресурсосберегающие и безотходные технологии называются экологическими. В последнее время к ним относятся устройства, использующие альтернативные источники энергии. Под альтернативными понимаются источники энергии, заменяющие современные гидроэлектростанции, тепловые и атомные электростанции. Производство большого количества энергии на ГЭС, ТЭС и АЭС чревато серьезными нарушениями в окружающей среде. Электростанции производят много вредных выбросов и нарушают естественный энергетический баланс на планете. Гораздо более безопасным представляется использование естественных энергоресурсов вулканов, термальных вод, приливов и отливов, солнечного излучения.

10. Второе рождение медицины
        Нет, наверное, более полезной и человечной науки, чем медицина. На протяжении тысячелетий недальновидные мыслители называли «Царицей наук» то математику, то физику, то философию. И почти никто из них так и не сказал доброго слова в адрес медицины. Люди могут обходиться без достижений математики и физики, без знания философии и политэкономии, но вот полное отсутствие медицины, пусть даже самой примитивной, мгновенно сказывается на жизни общества и отдельных его членов.
        Защита естественная и искусственная
        Человек живет в крайне враждебном ему мире, где каждый индивид борется за свое существование. Главные враги человека - разнообразные микробы, вызывающие инфекционные заболевания. Природа снабдила нас рядом защитных эволюционных механизмов, позволяющих нам сопротивляться действию болезнетворных микроорганизмов.
        Одним из таких механизмов является комбинирование генов, достигаемое через половое размножение. При смешении родительских признаков рождается совершенно новое по генетической конституции потомство. Биологическое разнообразие человечества увеличивает шансы на выживание нашего вида. А происходит это потому, что наследственность обусловливает естественную сопротивляемость человеческого организма инфекциям.
        Открыт иммунитет человека
        После того как А. Левенгук открыл бактерии и прочие микроорганизмы, прошло много времени, прежде чем ученые догадались, что именно эти крохотные создания приводят к возникновению инфекционных заболеваний, т. е. болезней, передающихся от одного человека к другому при кашле, кожном контакте и прочими способами. Первым человеком, понявшим огромную роль микробов в жизни людей, был великий французский химик и бактериолог XIX столетия Л. Пастер.
        Исследования этого ученого потрясли все человечество, поскольку он открыл микромир - другую вселенную, полностью противоположную нашей. Она воздействует на все живые организмы и проникает во все, что их окружает. «Вы думаете, что сами готовите пиво и вино? Это микробы выполняют за вас всю работу по сбраживанию продуктов», - обращался Пастер к пивоварам и виноделам.
        Открытие причин брожения в 1857 г. заставило Пастера удалиться от стереохимии, фундамент которой он заложил, и целиком переключиться на бактериологию. В 1865 г. ученый открывает причину болезней вина и пива, изобретая одновременно способ подавления деятельности микробов с помощью температурной обработки. Пастер предложил нагревать до +70 °C вино, пиво и молоко, чтобы убить находящихся там бактерий. Позднее этот метод был назван в его честь пастеризацией.
        Затем ученый переключается на человеческие болезни и закладывает основу иммунологии, обнаруживая все новые способы борьбы с возбудителями инфекционных заболеваний. В 1873 г. Пастер становится членом Медицинской Академии в Париже. Врачи с недоверием относились к Пастеру, поскольку не верили, что химик может чего-то достигнуть в медицине. Сам же Пастер на это не обращал внимания, а настойчиво занимался изучением микроорганизмов, поскольку был убежден, что именно они вызывают инфекционные заболевания у человека, точно так же как приводят к т. н. болезням вина и пива.
        Будучи принятым в среду медиков, Пастер принялся разрабатывать санитарные методы предотвращения распространения инфекций и бороться за неукоснительное соблюдение всеми врачами правил санитарии. В то время никто из ученых не связывал инфекционные заболевания с деятельностью микроорганизмов. Даже при зашивании ран медики не применяли средства дезинфекции, поэтому госпитали становились большими рассадниками болезней, чем ночлежки для нищих и бродяг.
        Помимо дезинфекции помещений, стерилизации медицинских инструментов и т. п. методов, Пастер предложил и другие способы профилактики и лечения заразных болезней. В основе этих методов лежала техника вакцинации. Сначала Пастер вел свой научный поиск интуитивно. Создавая свой принцип ослабления возбудителя, ученый точно не знал, какие именно процессы протекают в организме во время вакцинации. Иммунитет еще только предстояло изучить. Ощутимый вклад в изучение иммунной защиты организма внес крупный российский физиолог И. И. Мечников.
        Увлекшись работами А. О. Ковалевского по эмбриологии беспозвоночных, Мечников занялся исследованием личинок морской звезды. С 1882 по 1883 гг. ученый находился в Италии, где проводил наблюдения за этими личинками - мельчайшими обитателями морского планктона. Тельца личинок прозрачны, поэтому в микроскоп прекрасно видно, как внутри них перемещаются отдельные подвижные клетки. Они заменяют непрерывно циркулирующий кровоток, имеющийся у высших животных.
        Мечников вводил в организм личинок микроскопические крошки красящего вещества кармина, за которыми удобно наблюдать. Блуждающие клетки активно захватывали кусочки кармина. Тогда ученый предположил, что клетки способны поглощать любые инородные тела. Эксперименты подтвердили эту догадку. Когда Мечников вставлял шипы розы в тело личинки, они были быстро окружены блуждающими клетками, которые он предварительно окрашивал кармином. Клетки, подобные блуждающим, в ходе дальнейших исследований удалось обнаружить у самых разных существ - беспозвоночных, земноводных, рептилий, млекопитающих, в т. ч. и у человека.
        Эти клетки обладали способностью активно поглощать и переваривать любые посторонние частицы, попадающие в организм, а в первую очередь болезнетворных микробов. Мечников назвал эти клетки фагоцитами от греческих слов phagos - «пожиратель» и kitos - «клетка». Само явление поглощения чужеродных тел получило название фагоцитоза. В организме человека содержатся миллионы фагоцитов, только они не блуждают по нашему телу, а движутся в крови и лимфе, откуда время от времени проникают в ткани.
        Лимфатическая (лимфоидная) и кровеносная системы благодаря фагоцитам образуют единую иммунную систему, выполняющую защитную функцию. Все клетки-защитники являются белыми тельцами крови, т. е. лейкоцитами. Существует много разновидностей лейкоцитов, большинство из них участвует в общей защитной реакции организма - воспалительной. Проникновение занозы в кожу, грязи в ранку, микробов в ткани тела и прочие нежелательные вторжения влекут за собой воспаление. Его причиной является блокада лейкоцитами микробов, которых медики называют агентами.
        Белые кровяные тельца образуют т. н. лейкоцитовый вал, окружающий инородное тело. Крупные тела, например занозу, уничтожить непросто. Многие лейкоциты гибнут во время такой блокады. Скопления погибших белых телец и образуют гной. Среди лейкоцитов есть особый род клеток, принимающих в защите организма наиболее активное участие. Деятельность этих клеток, называемых лимфоцитами, является основой иммунитета. Лимфоциты - защитники, организующие иммунную реакцию организма. Они преимущественно циркулируют в лимфе, отсюда и происходит их название.
        Не следует, однако, думать, что вся иммунная система состоит единственно из лимфотока, сообщающегося с кровеносной системой. В действительности все гораздо сложнее. Лимфатическая система включает в себя еще и органы кроветворения, в которых происходит рождение кровяных телец, а также лимфоцитов. К кроветворным органам относятся, во-первых, вилочковая железа и селезенка, являющиеся одними из наиболее важных лимфоидных органов. Не уступает им по значимости костный мозг.
        Естественным продолжением лимфоидной системы служат миндалины, аденоиды, лимфатические узлы. Аппендикс и тонкий кишечник являются органами, в которых происходит переваривание старых и ослабленных лимфоцитов. Поэтому эти органы также можно считать частью иммунной системы. В целом последняя тесно связана с лимфоидной, кровеносной и гормональной (эндокринной) системами организма, и ее трудно выделить обособленно. Не так давно учеными было установлено, что иммунная система вместе с нервной и гормональной принимает участие в регуляции самых разнообразных жизненных функций. Таким образом, наш организм контролируется не только мозгом и гормонами, но еще и иммунитетом.
        Ученые-иммунологи различают несколько родов лимфоцитов. Мечников, как уже говорилось выше, наблюдал клетки-фагоциты. Они участвуют в первичной защитной реакции, атакуя чужеродные агенты и безжалостно уничтожая их. При этом фагоциты образуют ловчие щупальца, которые делают их похожими на осьминогов. Эти крупные клетки-«осьминоги» хватают бактерии и втягивают их в себя, постепенно переваривая. Однако такая защита не была бы вполне эффективной, поэтому основной задачей фагоцитов служит выделение антигенов.
        Каждый чужеродный агент несет на своей поверхности опознавательные вещества, которых нет на оболочке собственных клеток организма. Иммунная система отлично распознает такие вещества. Часть из них она знает изначально: они записаны в генетическом коде. То есть человек с самого рождения наследственно способен различать ряд чужеродных агентов по маркирующим веществам и уверенно отсеивать их от собственных клеток. Вещества, которые выдают бактерий, вирусов и прочих агентов, носят название антигенов.
        Фагоциты не переваривают пойманных микробов полностью, а оставляют целыми антигены, которые клетки-пожиратели выделяют всей своей поверхностью. Далее наступает следующий этап иммунного процесса, который организуют другие лимфоциты. Эти лимфоциты (их называют В-лимфоцитами) встречаются с фагоцитами и тщательно проверяют, какие антигены покрывают поверхность пожирателей. После чего В-клетки приступают к выработке антител.
        Антитела - это сложные химические вещества, молекулы которых устроены таким образом, что активно связывают и нейтрализуют любые антигены. Всякий чужеродный агент оказывается облеплен антителами и погибает. Для ряда агентов организм всегда имеет в запасе некоторое количество антител, химическая формула которых записана в генетическом коде.
        Кстати, вирус иммунодефицита человека (ВИЧ) оттого непобедим, что он влияет не на обычные клетки организма, а на защитные белые тельца. Вирус поражает лимфоциты, и они не могут производить антитела. В результате ВИЧ оказывается вне досягаемости защитных клеток. Хуже того, они ослабляются им и не могут атаковать прочие чужеродные агенты. Это приводит к тому, что ВИЧ-инфицированный становится уязвимым для самых безобидных микробов. У человека развивается СПИД - синдром приобретенного иммунодефицита, который заключается в отсутствии сопротивляемости к инфекциям. Рано или поздно больной погибает от какой-нибудь болезни, однако истинной причиной смерти следует считать СПИД.
        Как видно, у человека есть два вида иммунитета, обеспечиваемых одной иммунной системой. Первый вид - врожденный, заложенный в нашей наследственности. Поэтому люди имеют от рождения готовый набор антител и, как следствие, невосприимчивость к ряду заболеваний. Гены хранятся в хромосомах. Предположительно, те из генов, что ответственны за невосприимчивость к инфекциям и иммунную защиту, собраны в т. н. X-хромосоме. Ее еще называют женской, т. к. она передает женские половые признаки.
        Между прочим, ученые считают, что именно поэтому женщины болеют меньше мужчин. Ведь в женских клетках находятся сразу две X-хромосомы, тогда как у мужчин лишь одна. Это различие в количестве X-хромосом обусловливает различия между полами: недостающая хромосома X заменена Y-хромосомой, несущей мужские половые признаки. Стало быть, женщины обладают двойным иммунитетом. Однако такая защита привела к тому, что среди представительниц прекрасного пола более всего распространены аутоиммунные заболевания. В эту группу относят болезни, связанные с нарушениями работы лимфоцитов, когда те атакуют собственные клетки организма.
        Унаследованный иммунитет состоит из стандартного набора генов, но содержит разные их вариации. Один вариант гена обеспечивает надежную защиту при одних условиях, другой - при других. Следовательно, разные люди оказываются носителями разных форм стандартного наследственного иммунитета. Ранее сообщалось, что генетически обусловленная защита связана с биологическим разнообразием человеческой расы и поддерживает наше существование.
        Если бы все люди были абсолютно идентичны друг другу, то они обладали бы сходным иммунитетом. Тогда микробы за несколько поколений смогли бы научиться обходить иммунную защиту, и человечество погибло бы от инфекций. Но поскольку на свет каждый раз рождаются совершенно разные люди, то иммунитет, не претерпевая коренных изменений, приобретает великое множество форм. В результате попытки микробов победить человечество оказываются тщетны.
        Нетрудно заметить, что сам по себе врожденный иммунитет распадается на две разновидности. Защитные механизмы связаны с деятельностью клеток-пожирателей и с активностью антител. Ученые в силу этой причины склонны различать иммунитет клеточный и гуморальный. Первый сводится к фагоцитозу, а второй - к химическому связыванию антигенов. Указать наиболее важный из них вид трудно, однако ведущую роль в защитных реакциях играет фагоцитоз. Фагоциты поглощают чужеродных агентов и побуждают лимфоидную систему к выработке антител.
        Значит, условно клеточный иммунитет можно считать главным. Поглощение и переваривание микробов происходит не везде одинаково, эта функция наиболее активно выполняется лимфоцитами в особых центрах: участках лимфотока, т. н. лимфатических узлах. Именно здесь скапливаются контролирующие внутреннюю среду человека лимфоциты.
        Впрочем, сходным образом протекают защитные реакции при другом виде иммунитета, который называется приобретенным. Он возникает после того, как человек переболел данным заболеванием и в его организме выработалась невосприимчивость к инфекции. Клетки В-лимфоциты, «считавшие» структуру антигенов с поверхности фагоцитов, научились самостоятельно производить к новым агентам связывающие антитела, которых не было в генетическом коде, используя свои внутренние резервы. Хотя существует еще более безопасный способ приобретения иммунитета. Часть новых антител человек получает почти сразу после рождения с молоком матери.
        Приобретенный иммунитет, описанный выше, в медицине называется естественным. Врачи же умеют создавать искусственный приобретенный иммунитет, а также укреплять естественный и помогать ему бороться с болезнью.
        Создана техника вакцинации
        Самым надежным средством борьбы с болезнетворными микроорганизмами являются вакцинация и вакцинотерапия. Вакцинация включает в себя превентивные (предупредительные) меры, тогда как вакцинотерапия направлена непосредственно на борьбу с уже имеющимся заболеванием. Впервые технику вакцинации применил Э. Дженнер, а затем детально разработал Л. Пастер. В исследованиях Пастера принимал активное участие И. И. Мечников, совершивший немало открытий в области иммунологии.
        Английский врач Дженнер является изобретателем способа предупреждения заражения оспой - оспопрививания. Технику этого метода ученый разработал в 1796 -1798 гг. Он давно заметил, что переболевшие оспой пациенты становятся впоследствии невосприимчивыми к данной инфекции. Кроме того, врач обратил внимание на тот факт, что высокой невосприимчивостью к оспе обладают женщины, работающие на фермах доярками.
        Дженнер справедливо заключил, что они тоже болеют оспой, оттого приобретают иммунитет, но болезнь протекает в легкой форме. По этой причине сами женщины-доярки не замечают своего заболевания, не жалуются на здоровье и не обращаются к врачу, хотя натуральная оспа значительно ослабляет человеческий организм и зачастую приводит к смерти. Врач пытался понять, каким образом доярки могли заразиться легкой формой оспы. Поскольку он знал о существовании т. н. коровьей оспы - похожего заболевания у коров, то предположил, что инфекция передается дояркам именно от животных.
        Дальнейшие опыты подтвердили правоту Дженнера. Он доказал, что инфекция попадает в организм доярок через ссадины на руках. Здесь вырабатываются антитела к возбудителю, клетки-защитники учатся его отличать и успешно бороться с ним. Поэтому когда переболевшая коровьей оспой доярка заражается оспой натуральной (человеческой), то иммунная система ее организма оказывается готовой к нанесению ответного удара. Передача инфекции осуществляется благодаря оспенным пузырькам на вымени коровы. Из лопнувших пузырей вытекает жидкость, содержащая возбудителя оспы. Она-то и проникает в мельчайшие повреждения кожи на руках доярки.
        Дженнер ввел в медицинскую практику предупредительные прививки, содержащие жидкость из коровьих пузырьков. Предупредительное прививание получило название вакцинации, а препарат для прививки - вакцины (от латинского слова, означающего «корова»). Дженнер не предполагал, что болезнетворное начало, с которым он работал, является разновидностью микроорганизмов. Это установил Л. Пастер, с именем которого связано дальнейшее развитие иммунологии и техники прививания. Он усовершенствовал технику вакцинации и создал вакцинотерапию, поскольку знал причины инфекционных болезней и механизмы распространения возбудителей.
        Созданный Пастером метод ослабления возбудителя опирается на открытие Э. Дженнера. Дженнер, проводя предупредительное прививание, вводил в организм своих пациентов возбудителей оспы. Но поскольку эти возбудители были слабее обыкновенных, то иммунная система успешно с ними боролась, попутно вырабатывая антитела против микроорганизмов, вызывающих любую форму данного заболевания. Так приобретался иммунитет против смертельно опасной натуральной оспы.
        Пастер разумно рассудил, что поиски слабых форм возбудителей разных инфекционных заболеваний в большинстве случаев окажутся бесплодными. Поэтому он решил для приготовления профилактических и лечебных вакцин искусственно получать ослабленных или умерщвленных возбудителей, которые не представляют собой никакой угрозы для здоровья человека. Они пожираются фагоцитами, сообщающими В-лимфоцитам информацию, необходимую для синтеза соответствующих антител. Таким образом иммунная система запоминает возможного чужеродного агента и подготавливается к очередной встрече с ним.
        Впервые защитная прививка человеку была сделана б апреля 1885 г. В этот день к Пастеру обратилась женщина, ребенок которой был укушен бешеной собакой. Защиты от бешенства тогда не существовало, ее создал сам Пастер, но пока не применял при клиническом лечении больных. Лечение прошло успешно. Метод Пастера приобрел большую известность. К «благодетелю человечества», как назвали врача благодарные пациенты, обращались люди из всех стран Европы, из США и России.
        В 1888 г. в Париже по инициативе Пастера открывают первый микробиологический институт, названный впоследствии его именем. Пастер собрал вокруг себя большую группу молодых врачей, которых учил новому подходу к лечению болезней. На пастеровских «охотников за бактериями» больше не смотрели как на чудаков, застывших над микроскопом. Микробиология и иммунология определяют последующее развитие хирургии, гигиены и всей медицинской науки в целом.
        Химия лекарств
        Часто случается слышать призывы алармистов вернуться к природе и запретить промышленность, которая загрязняет окружающую среду. Конечно, перестраивать производство нужно самым решительным образом, чтобы не задохнуться собственными ядовитыми выбросами. Но стоит ли отменять индустрию? Наверное, нет, потому что поддерживает наше цивилизованное существование, устраняя естественный отбор, в т. ч. и производя лекарственные препараты.
        Открытия фармакологии
        Первобытный человек сильно зависел от жестокого естественного отбора. Находки археологов показывают, что доисторические люди часто болели различными тяжелыми заболеваниями, в т. ч. и хроническими, страдали от инфекций и раковых опухолей, получали травмы скелета, рождались с физическими и психическими отклонениями. Естественно, смертность была в то время чрезвычайно высока. Человек каменного века умирал обычно в возрасте 25 -30 лет.
        Это происходило потому, что люди не знали химии лекарств. Человек собирал в лесу и в поле растения и минералы, содержащие сильнодействующие вещества. Такое лечение иногда помогало, но зачастую было опасным и вредоносным. Отсюда высокая смертность. Захоронения донесли до нас кости со следами тягчайшей патологии и застарелых болезней.
        У первобытного человека не было возможности лечиться. Кроме того, его постоянно преследовал стресс. Сегодня принято считать, что стресс - болезнь нашего времени. Это мнение не совсем верное. Еще первооткрыватель стресса Г. Селье заявлял, что доисторический человек не жил в гармонии с миром и самим собой. Наши пращуры боялись встреч с пещерными львами и прочими опасными животными той эпохи, боялись молнии, бури, духов леса и т. д. Жизнь людей протекала в постоянном стрессе.
        Высока была смертность среди новорожденных и грудных младенцев. Ожидать другого и не приходилось, т. к. шаманы при лечении маленьких детей допускали непростительные ошибки. Дремучее невежество дополнялось смирением перед собственным бессилием. Про смерть ребенка говорили: «Бог дал - Бог взял». В этой печальной фразе заключена готовая формула естественного отбора.
        Современный человек должен жить долго. Компьютерное моделирование показало, что предел биологического существования человека, заложенный в нас матерью-природой, равняется 160 годам! Мы знаем, что можно победить вирусы и прочие болезнетворные начала. Мы знаем, что против любой болезни можно найти лекарство. Нам уже меньше страшны раны, кровотечения, переломы, обмороки, остановка дыхания. Мы хотим, чтобы наши дети жили, росли крепкими и сильными. Современному человеку противна сама мысль о подчинении жестокому отбору, потому что мы уверенно выходим из-под его власти.
        Самым верным средством преодолеть отбор является медицина, особенно фармакология. Любые трудности и испытания, с которыми неизбежно сталкивается человек в своем стремлении подчинить природу, вызывают у него всяческие болезни. Отбор направлен на ослабление и уничтожение. Задача человека прямо противоположна - укреплять и преумножать здоровье.
        Самым ранним открытием фармакологии следует считать само обнаружение лекарственных веществ. Оно произошло совершенно случайно, во время отслеживания первобытным охотником диких зверей и изучения их повадок. Животные во время болезни инстинктивно поедают побеги, листву или корневища растений, содержащих сильные защитные вещества, благоприятно влияющие на живые клетки. Эти растения назвали лекарственными растениями. Опытным путем, через пробы и ошибки, древние знахари изучили их свойства.
        Кроме того, изучались свойства прочих природных веществ - минеральных вод и горных пород. Потребность в исцеляющих средствах заставляла человека пробовать все подряд. В античности лекарственные формы приобретают широкое распространение, а попутно начинается производство лекарств. Этим занимались аптекари, которые не только собирали травы и минералы, но и приготовляли из них определенные лекарственные формы, а также придумывали многокомпонентные составы. То есть они составляли смеси из разных веществ и получали новое средство, которое нельзя найти в природе.
        Однако ятрохимия, т. е. химия лекарств, зародилась лишь в средние века. Эта наука представляла собой сначала одно из направлений алхимии. Важнейшими задачами ятрохимии для большинства алхимиков считались получение трех веществ, два из которых имеют самое непосредственное отношение к медицине: философского камня, эликсира молодости и панацеи. Под панацеей понимается мифическое лекарство от всех болезней.
        Эликсир молодости, как нетрудно заключить из названия, возвращал людям здоровье, силу и цветущий вид. В качестве дополнительной рекламы не созданного еще товара алхимики использовали невыполнимое обещание вернуть старикам и старухам потенцию и сексуальность юности. Несмотря на строгие нравы Средневековья, реклама оказалась невероятно действенной и вводила в заблуждение тысячи наивных простаков. Некоторые алхимики всерьез верили в возможность получения данных чудодейственных препаратов.
        К числу этих мечтателей относился и один из основателей ятрохимии Т. Б. фон Гогенгейм, более известный как Парацельса. Он верил, что лекарства - это яды. Они полезны только потому, что принимаются строго отмеренными минимальными дозами. Эти яды, способные убить здорового человека, при верном применении подавляют болезнь. В дальнейшем развитие подобных взглядов привело к возникновению аллопатии, на которой основана почти вся современная фармакология.
        Аллопатия - детище медицины Нового времени. Это направление науки считает, что болезнь необходимо подавлять, избавляясь при этом от ее синдромов. Действие препарата должно обязательно вызывать эффект противоположного. То есть при жаре надлежит употреблять жаропонижающее, при кашле - подавляющее кашель, при диарее - закрепляющее и т. д. Аллопатия признана во всех странах, отношение же к ее сопернице гомеопатии неоднозначно.
        Гомеопатию создал немецкий доктор С. Ганеман в 1805 г. Однажды он ознакомился с сочинением о лечебном эффекте коры хинного дерева, которая являлась в то время единственным лекарством от лихорадки. Хотя доктор и не страдал лихорадкой, но решил попробовать кору хины, чтобы проверить силу ее действия. Вдвойне его интересовало, каким образом скажется влияние хины на здоровый организм. Действие коры превзошло все ожидания Ганемана. Самочувствие доктора постепенно ухудшалось, и вскоре он заболел, причем признаки заболевания в точности повторяли симптомы обычной лихорадки.
        Ганеман провел несколько лет затворником, поглощенный своими экспериментами. Опыты над собой убедили доктора, что кора хинного дерева неизменно вызывает у здорового человека те симптомы, которые устраняет у больного лихорадкой. По прошествии некоторого времени Ганеман провозглашает, что подобное лечится подобным. То есть болезни нужно исцелять теми препаратами, которые приводят к возникновению сходных болезней у здоровых людей. Ганеман создает целое направление в медицине, получившее название гомеопатии (от греческого homaeo - «подобный»).
        Гомеопатический метод, предложенный доктором Ганеманом, оказался удобен во многих отношениях. К примеру, врачу необязательно ставить диагноз. Нужно лишь точно описать симптомы заболевания и подобрать к ним соответствующий препарат. Доктор Ганеман достиг славы и известности, однако в научном мире его многие так и не признали. Сегодня Россия является одной из немногих стран, где в официальной медицине сложилось уважительное отношение к гомеопатическому методу лечения, который выступает в качестве дополнения к аллопатии. Также гомеопатия распространена в ряде европейских государств, за исключением Германии, и в Индии. В США метод почти не практикуется.
        Современную гомеопатию редко называют лечением подобным, она получила новое название - медицина малых доз. Употреблять гомеопатические препараты нужно только в крайне малых дозах, которые получаются из настоек и вытяжек путем потенцирования. Степени потенцирования, представляющего собой проводимое строго определенным образом разбавление лекарственного начала, обозначаются порядковыми номерами. При максимальном разбавлении лекарственное начало полностью выводится из препарата, но он сохраняет свою силу.
        Растворитель обладает способностью изменять физические свойства под влиянием растворившихся в нем веществ. Он сохраняет в своей молекулярной структуре следы пребывания чужих молекул. Это свойство называют «памятью воды», хотя такая своеобразная память присуща не только воде, но и спирту, а также другим веществам, применяемым для растворения лечебного начала. Не следует думать, будто гомеопатия имеет какие-то исключительные преимущества перед традиционной аллопатией. Неправильно подобранные и неверно принимаемые гомеопатические препараты чрезвычайно опасны для здоровья.
        Начало XX-го столетия было ознаменовано одним из величайших открытий в области химии лекарственных препаратов. Возникновение и необычайная популярность гомеопатии во второй половине XIX столетия не были игрой случая. Расположение к ней во многих странах объяснялось вопиющими недостатками аллопатического метода, изжитыми лишь в прошлом веке. Аллопаты нередко прибегали к весьма сомнительным приемам лечения, ныне отвергнутым медициной. Эффективность аллопатического метода многократно возросла после открытия антибиотиков.
        Медики традиционного направления в начале XX в. настойчиво искали средства, которые отвечали классическому правилу аллопатии - противоположное противоположным. Поскольку после открытий Л. Пастера стало известно о вредном воздействии на организм болезнетворных микробов, то медицина стала искать способы подавления их активности. Ослабление попавших в организм человека возбудителей инфекций означало аллопатический путь исцеления болезни.
        Некоторые антибиотики были известны человеку с незапамятных времен. Это фитонциды, к которым относятся летучие лечебные вещества лука и чеснока. Но в узком смысле слова антибиотиками называется небольшая группа токсичных веществ, вырабатываемых некоторыми бактериями, преимущественно актиномицетами, и микроскопическими грибками.
        Первый антибиотик, пригодный для клинического применения, был получен в 1929 г. А. Флемингом из плесневого грибка пенициллиума. От названия этого грибка происходит и название антибиотика, ныне хорошо известного всем. Препарат был назван пенициллином. На его основе в настоящее время получено немало ценных лекарств.
        К 1942 г. ученые открыли еще несколько подобных веществ, тогда З. Ваксман предложил термин «антибиотики» для обозначения данной группы препаратов. Он произвел новое слово от корней греческого происхождения: anti означает «против», a bios - «жизнь». Эти химические соединения очень ядовиты, они убивают болезнетворные микроорганизмы или подавляют их размножение, а также задерживают рост злокачественных опухолей.
        На сегодняшний день широко применяются только 60 веществ данной группы, тогда как химики открыли 4000 антибиотиков. Немногие антибиотические препараты получают путем хемосинтеза. Фармацевтическая промышленность получает эти вещества микробиологическим синтезом. То есть антибиотики выделяют из бактерий и грибков, выращиваемых в специальных чанах на заводах по выпуску лекарственных препаратов.
        Изобретены лекарственные формы
        Создать лекарство недостаточно, необходимо, чтобы лечение новым препаратом приносило ощутимый результат. Эффект от приема фармакологических средств неотвратимо снижается из-за их неточного действия. Требуется для начала разработать сильнодействующие вещества, безопасные для здоровья, а это очень сложно сделать. В результате курс лечения становится малоэффективным или даже опасным. Конец прошлого и начало нынешнего века ознаменованы прорывом медицины в данном направлении.
        Способность воздействовать на организм человека, на протекающие в нем физиологические процессы напрямую зависит от вида лекарственного препарата и способа его введения в организм. Есть вещества, предназначенные для подкожных, внутривенных или внутримышечных инъекций, а также для приема в виде порошков, растворов, эмульсий, таблеток, драже и т. д. Есть аэрозоли для ингаляций. Есть мази и кремы, действие которых проявляется при втирании в кожу. Все перечисленные разновидности являются лекарственными формами.
        Различные лекарственные формы были изобретены еще в древности. Во времена родового строя знахари умели приготавливать порошки, отвары, настойки и целебные мази. Сегодня, по прошествии многих тысяч лет, медики и фармацевты создают все более удачные лекарственные формы, чтобы повысить эффективность доставки препарата к очагу болезни. Фактически наука располагает возможностями изготавливать все вещества в виде одной-единственной формы. Скажем, в виде пилюли или раствора.
        И все же врачи этого не делают, но предпочитают использовать в разных случаях примочки, инъекции, порошки и т. п. Каждый раз лекарственный препарат подбирается именно в той форме, которая соответствует назначенному курсу лечения. Сделано это было исключительно в целях наиболее действенного транспорта препаратов к очагу болезненного процесса. Совершенствование транспорта препарата стало ныне главной задачей медицины и фармакологии после поиска новых химических соединений.
        Ожидается в ближайшем будущем увеличение числа разнообразных лекарственных форм. Вскоре медицина изменится коренным образом благодаря новым оригинальным разработкам. Если требуется проводить выборочное лечение пищеварительного тракта, то можно использовать радиоуправляемую пилюлю. Она представляет собой миниатюрное устройство с катушкой индуктивности и баллончиком для действующего вещества. Заряженная пилюля принимается пациентом, после чего врачи наблюдают за ее передвижениями с помощью рентгеновского аппарата.
        Едва мини-устройство достигает нужного отдела желудочно-кишечного тракта, врач включает генератор высокой частоты, через антенну возбуждающий в катушке пилюли электрический ток. Этот ток пережигает тончайшую проволочку, удерживающую пружину выброса иглы. Игла предназначена для того, чтобы проколоть баллончик с лекарством. Оно вытекает из проколотого отверстия и поступает в пищеварительную систему.
        Если необходимо ввести лекарство в определенный отдел кровеносной системы, то здесь помогут липосомы. Это жировые тельца, в которые помещается препарат. Тельца свободно попадают в любой отдел кровеносной системы. Капсула с лекарством не обязательно должна быть подвижной, это может быть вшитое устройство, которое автоматически вводит в кровеносную систему вещество определенными порциями и распределяет его. Перспективны подобные имплантанты для периодического распределения гормональных контрацептивов в женском организме.
        Уже сегодня диабетики перестают пользоваться шприцами, заменяя их пульверизаторами, сходными по принципу действия с пульверизаторами, используемыми при лечении астмы. Ученые разрабатывают облатки, которые по мере рассасывания внутри какого-либо органа или полости тела высвобождают лекарственное вещество. В первую очередь такие облатки перспективны при лечении злокачественных опухолей. Полипептидные препараты для заживления хирургических ран, возможно, будут содержаться в самих нитках для швов.
        В обозримом будущем изменится и способ диагностики заболеваний. Рутинная работа по проведению анализов будет выполняться роботами. Первый образец медицинского робота был представлен в 1989 г. Устройство под названием «Аутолаб» представляет собой программируемый диагностический аппарат, способный проводить разнообразные биохимические тесты. «Аутолаб» снабжен манипуляторами («руками») и рассчитан на быстрое проведение самых различных анализов, вплоть до сложнейших - обнаружения рака и СПИДа, обследования беременных, пренатальной диагностики.
        До рождения
        Наследственность, о которой было рассказано в одном из предыдущих разделов, чрезвычайно удивительна. Именно благодаря наследственности дети похожи на своих родителей. Но по ее же вине ребенок может быть совершенно непохож на папу и маму, а иметь что-то общее с дедушками, бабушками, дядями, тетями и прочими дальними родственниками. Американский писатель О. Холмс по этому поводу заметил следующее: «Наследственность - омнибус, в котором нас сопровождают наши предки; то и дело кто-нибудь из них высовывается оттуда, ошеломляя нас своим появлением». Впрочем, не столь важно, на кого похож ребенок. Главное, чтобы он был здоров, но и это тоже зависит от наследственности.
        Открыты наследственные болезни
        Еще Аристотель рекомендовал контролировать брачные отношения в обществе, поскольку нередко в брак вступают люди с такими задатками, которые при соединении в потомстве дают уродство или безумие. Идея улучшения «породы человеческой» получила со временем широкое распространение, однако почти никогда не была научно обоснована. Вот почему евгеника - наука о генетической чистоте человека - находится сейчас в стадии разработок и никаких практических рекомендаций не дает.
        Контроль за деторождением является весьма проблематичным направлением медицины, где недопустимы скороспелые суждения на уровне науки античности. Медицинская генетика занимается не менее сложными задачами, но только более прозаическими, чем улучшение генофонда человечества. Генетики, работающие в данном направлении, пытаются защитить людей не от самих себя, но от слепой игры природы, приводящей к возникновению наследственных болезней.
        Вещество наследственности - нуклеиновая кислота ДНК - весьма податливо и часто претерпевает различные превращения, вызванные попаданием в клетки вирусов, воздействием токсичных и активных веществ (особенно канцерогенов, способствующих возникновению и росту раковых опухолей), действием ионизирующих излучений или, наконец, элементарными ошибками, происходящими в хромосомах при делении клеток. Возникающие аномалии принято называть мутациями, если перерождается какой-нибудь ген.
        Подавляющее большинство мутаций совершенно безвредно, каждый из нас несет в себе мутантные клетки, даже не подозревая этого. Однако существуют и вредные мутации, появление которых ведет к разной степени тяжести нарушениям функционирования клеток. Они могут стать причиной болезней или привести к летальному исходу.
        Более серьезные нарушения, которые охватывают целые хромосомы и сказываются в изменении их формы и размеров, называют хромосомными аберрациями. Они непременно приводят к заболеваниям или смерти. При некоторых мутациях и аберрациях ребенок погибает, еще не успев родиться. Происходит естественное абортирование человеческого зародыша. Зачастую случается и так, что заболевание обусловлено неблагоприятным набором родительских генов. При ином сочетании эти гены не дали бы никаких отклонений.
        В строгом смысле слова все болезни так или иначе связаны с генами. Наследственность никак не влияет на ожоги, раны, обморожения и т. д., однако от генотипа зависит, насколько быстро произойдет заживление ран и наступит выздоровление. Есть заболевания, вызванные внешними причинами и вместе с тем зависящие от генетического кода. Гены определяют, насколько велика вероятность возникновения именно этого заболевания (т. е. определяют предрасположенность) и как тяжело она будет протекать. Такова, к примеру, гипертония.
        Другие болезни - подагра, диабет и т. п. - имеют сугубо генетическую природу, но развиваются лишь под воздействием особых факторов извне. Наконец, есть заболевания, которые возникают у человека неизбежно, если он является носителем неблагополучных сочетаний генов, мутаций или хромосомных дефектов. Такие недуги носят название наследственных, или врожденных, болезней.
        О существовании заболеваний, передающихся из рода в род по наследству, люди догадывались давно. Из средневековых хроник известно, например, что подагра преследовала род герцогов Лотарингских и род Медичи. Как бы то ни было, научных исследований в этой области не проводилось вплоть до второй половины минувшего столетия. Лишь в 1956 г. ученые открыли строение человеческого кариотипа, т. е. присущего нам в норме набора хромосом. С тех пор стало возможным непосредственно наблюдать отклонения в кариотипе при врожденных болезнях, вызванных хромосомными аберрациями.
        Первым заболеванием, наследственная природа которого была подтверждена, оказалась болезнь (синдром) Дауна, названная так по имени медика, составившего ее описание. Синдром представляет собой крайнюю степень врожденного слабоумия, дополняемого аномальным развитием или недоразвитием внутренних органов, и иногда сопровождается физическими уродствами. Наиболее типичны для внешнего облика человека, страдающего болезнью Дауна, низкий рост, короткопалость рук и ног, особое выражение лица - приоткрытый рот, специфический разрез глаз. Главной характерной чертой больных является слабоумие.
        Эта болезнь присуща всем человеческим расам, причем признаки синдрома выражены настолько отчетливо, что неизменно преобладают над расовыми. Заболевание встречается довольно часто. На 500 родов приходится 1 ребенок с синдромом Дауна. Замечено также, что частота рождения таких больных зависит от возраста родителей, в первую очередь материнского. Для беременных в возрасте от 35 до 40 лет риск родить ребенка с синдромом Дауна гораздо выше, чем для более молодых женщин. Причиной тому служит накопление с годами в клетках человека вредных мутаций, а это уже провоцирует возникновение наследственных дефектов у потомства.
        Синдром Дауна вызван довольно редким отклонением в делении хромосом, называемым трисомией. В норме хромосомы внутри клеточных ядер разбиты на пары. Трисомия означает наличие лишней, третьей хромосомы, добавочной к одной из пар. Обычно подобные аномалии встречаются в паре половых хромосом, отвечающих за формирование пола. Одна из половых хромосом может либо отсутствовать, либо иметь дополнительного «попутчика». Это и называется трисомией.
        В неполовых хромосомах - аутосомах - случаи трисомии редки. Такие эмбрионы самопроизвольно абортируются. Синдром Дауна является исключением. Данная наследственная болезнь выражена в трисомии 21-й пары аутосом, включающей в себя еще одну хромосому.
        Среди остальных частых наследственных аномалий числятся опять-таки трисомии, но теперь уже по половым хромосомам. В норме у человека только две половые хромосомы. Они обозначаются XX у женщин и XY у мужчин, причем X-хромосома определяет женский пол и приводит к рождению девочки, тогда как Y-хромосома является мужской. На каждые 400 новорожденных мальчиков приходится один случай синдрома Клейнфельтера, выражающегося в недоразвитии половых признаков и неправильных пропорциях тела. Кариотип больных мальчиков нарушен, т. к. в клетках присутствует лишняя X-хромосома. Трисомия выглядит следующим образом: XXY.
        Многочисленные аномалии в строении органов вызывает синдром Тернера, встречающийся у девочек. Частота этого заболевания составляет 1 случай на 5000 рождений девочек.
        В клетках таких девочек не достает одной X-хромосомы, т. е. их полный кариотип включает в себя лишь 45 хромосом вместо положенных 46. Это уже не трисомия, а моносомия по 23-й паре. Моносомия означает недостачу в паре еще одного хромосомного тельца.
        Всего в настоящее время известно свыше 4000 мутаций, вызывающих различные генные болезни. Число хромосомных болезней также чрезвычайно велико. В общей сложности наследственные дефекты являются причиной порядка 40 % нарушений у зародыша. При таком количестве аномалий эмбрион погибает до рождения и абортируется.
        Изобретены способы пренатальной диагностики
        Естественно, специалисты по медицинской генетике задались целью найти способ узнать о дефектах плода задолго до его рождения. Это чрезвычайно необходимо, чтобы защитить и мать, и ребенка. Зная о болезни плода, можно отчасти предсказать, как пройдут роды, потребуется ли новорожденному специальный уход, насколько велика опасность смерти ребенка во время беременности и в грудном возрасте. Больному с первых дней жизни необходима особая диета, режим физических нагрузок, прием препаратов, защита от аллергенов и т. п. Наконец, при некоторых врожденных нарушениях целесообразно посоветовать будущей матери своевременно избавиться от плода.
        Медико-генетическая техника определения наследственных нарушений еще не родившегося ребенка носит название пренатальной, т. е. дородовой, диагностики. Иначе она называется медико-генетическим консультированием еще. Под таким названием пренатальная диагностика больше известна в нашей стране. Помимо вышеназванных целей, она преследует и некоторые другие. В том числе дородовая диагностика позволяет составить генетическую карту рода родителей и выявить наследственные отклонения, которые могут передаться потомству даже от здоровых родителей.
        Часто бывает, что аномалия имеется у какого-то предка одного из родителей. Или она неожиданно возникает у сибса - сестры или брата одного из родителей. Врачам предстоит ответить на непростой вопрос: может ли эта аномалия проявиться у ожидаемого ребенка? Насколько велик генетический риск? Генетики заранее определяют, будут ли иметь совместимость по резус-фактору мать и плод, т. к. наличие резус-конфликта может повлечь за собой нежелательные последствия и для женщины, и для ее ребенка.
        Группы крови предопределены генетически, оттого изменить их никак нельзя. Это не позволяет использовать при переливании кровь другой группы, отличной от группы крови реципиента. Всего у человека можно насчитать порядка 15 основных групп крови, из которых наиболее важны ABO (читается «а-бэ-ноль») и резус-фактор. Резус определяется двумя формами одного и того же гена, поэтому существует в двух состояниях - резус положительный Rh^+^ и отрицательный Rh^-^.
        Два типа резуса обусловлены генетически двумя формами одного и того же гена, причем является доминантной из них та, которая отвечает за Rh^+^. Следовательно, у родителей с одинаковым резусом (Rh^+^ или Rh^-^ и у отца, и у матери) ребенок родится с резусом, свойственным обоим родителям. У родителей с разным резусом ребенок рождается с доминантным положительным резус-фактором. Когда отец имеет группу крови Rh^-^, а мать противоположную, то ребенок приобретает резус матери, что нисколько не опасно. Если же резус-отрицательная женщина зачала от резус-положительного мужчины, то плод приобретет группу крови отца.
        Кровеносная система плода окажется несовместимой с кровеносной системой матери. Материнский организм будет постепенно отравляться антигенами из кровотока плода и вырабатывать в ответ антитела, разрушающие клетки ребенка. Происходит отравление организма у обоих, а также гемолиз, т. е. разрушение эритроцитов - красных кровяных телец крови, переносящих к тканям кислород. В прошлом резус-конфликт служил причиной большого количества детских смертей. Сегодня же медицина располагает средствами спасения жизни беременной и плода.
        Также на консультации прогнозируется состояние здоровья второго ребенка - будет ли он болен или здоров, особенно если первый малыш имеет наследственные нарушения.
        И конечно, пренатальная диагностика дает более точный и более ранний, чем ультразвуковое исследование, ответ на вопрос о том, каков будет пол ребенка. Он определяется на хромосомном уровне, а потому на медико-генетической консультации нетрудно получить данную информацию.
        В наше время биологическая культура получила гораздо большее распространение, чем 30 лет назад. Население всех развитых стран, включая и нашу, в целом неплохо, а иногда и весьма хорошо осведомлено о достижениях генетики. Супружеские пары, преимущественно еще не имевшие детей, все чаще обращаются в медико-генетические консультационные центры. На Западе пренатальную диагностику сегодня проходят от 60 до 70 % беременных женщин. Генетические исследования в России осуществляют практически во всех крупных городах - областных и краевых центрах.
        Медико-генетическое консультирование сводится к следующим важнейшим приемам. Во-первых, это изучение наследственного аппарата и родословной обоих родителей. Оно наиболее существенно тогда, когда родители еще только планируют завести ребенка. Во-вторых, собственно дородовая диагностика, которая сводится к исследованию генетической карты плода беременной женщины.
        Пренатальное обследование проводится в большинстве случаев посредством метода амниоцентеза. Врач делает пункцию брюшной полости и берет околоплодную жидкость, содержащую клетки плода. Амниоцентез дает возможность обнаружить все хромосомные отклонения и порядка 130 -150 генных болезней. Сходен с амниоцентезом метод биопсии хориона, применяемый на еще более ранних стадиях беременности. Во время пункции берется жидкость, окружающая зародыш, достигший всего лишь 7-недельного возраста.
        Пренатальная диагностика, однако, не принесла решения всех проблем, как ожидалось. В будущем, когда врачи освоят технику лечения наследственных болезней, это направление медицины, безусловно, принесет немало пользы. А пока некоторые медики и ученые других направлений, а также общественные деятели всерьез полагают, что обнаружение наследственных дефектов может обернуться страшным злом. Пренатальная диагностика ставит непростые вопросы перед родителями ребенка, перед врачом и, наконец, перед всем человечеством.
        Как поступить, если у плода выявлена генетическая предрасположенность к гипертонии? Ответ на этот вопрос не особенно сложен: предрасположенность не означает болезни. Родители и врачи будут знать о грозящем недуге и примут меры, чтобы ребенок избежал нежелательной участи. Образ жизни (режим, питание, правильно подобранные физкультурные упражнения) на 70 % определяет состояние здоровья каждого человека. И только оставшиеся 30 % определяются генами. Получается, что в конечном итоге решающую роль в развитии того или иного заболевания играет среда обитания.
        И тем не менее… Предрасположенность к гипертонии многим родителям вообще не кажется сколько-нибудь серьезной угрозой: с этой болезнью жить можно. А если у эмбриона выявлена тяжелая наследственная патология, скажем, синдром Дауна? Стоит ли продлевать в таком случае беременность или необходимо избавиться от плода? Будет ли преступлением избавление от такого ребенка, или, напротив, преступлением будет сохранение ему жизни, полной страданий?
        Вопрос о детях, страдающих подобными заболеваниями, очень сложен. Он имеет в своей основе проблему отношения к ценности человеческой жизни вообще. Если родители будут свободно отказываться от еще неродившегося ребенка, который чем-то не понравится. Если медицина сможет предоставлять родителям широкий выбор, возможность изменить будущего ребенка на любой вкус.
        Если это произойдет, не станет ли отношение к человеку чисто потребительским? Страшно представить себе мир, в котором люди заказывают себе детей с определенными данными, а если что-то родителей не устраивает, то они запросто избавляются от неродившегося человека и заводят нового, «улучшенной конструкции».
        С другой стороны, ужасен и нынешний мир, в котором 4 % новорожденных обладают наследственными дефектами. Треть от этого количества постоянно находится в больницах, т. к. не может нормально жить. Примерно 40 % молодых пациентов умирают, не дожив до 14 лет. Не является ли сохранение жизни этим детям еще большей жестокостью? Не является ли рождение тех, кто обречен умереть ребенком, чем-то антигуманным?
        Сегодня разные общественные организации и медицинские учреждения во всем мире, практикующие пренатальную диагностику, предлагают два диаметрально противоположных варианта. Одни, консервативно настроенные, руководствуются религиозными соображениями и категорически запрещают аборты. Хотя религия должна бы оправдывать смерть как акт милосердия.
        Другие подходят к проблеме чисто биологически и настаивают на абортировании эмбрионов с врожденными аномалиями развития. Обществу не под силу содержать и лечить таких детей. Кроме того, увеличение числа детей с подобного рода отклонениями может привести к вырождению человечества. Но и эта позиция не выдерживает критики: человек не животное, он не подлежит «улучшению крови». Отбор личностей недопустим. Более того, человек имеет право на жизнь уже потому, что он - человек!
        Скорее всего, эта проблема не может решаться по тривиальной линейной схеме. Видимо, для ее решения и вовсе не существует какого-то удобного шаблона. Стандарты пригодны в мире техники, в т. ч. и в методике дородовой диагностики, тогда как наша жизнь не может быть втиснута в узкие рамки стандартов. Остается надеяться, что разум, здравый смысл и духовность человека не допустят катастрофы.

11. Геологические науки
        Как только не называли XX век: космическим, атомным, электрическим, компьютерным и т. д. Однако правильнее было бы назвать его веком геологическим. Урановая руда подарила нам атомную энергетику, металлы послужили материалом для создания ракет и роботов. Из недр планеты добываются горючие ископаемые, строительный камень, сырье для удобрений, ювелирные камни. А главное, именно за прошедшее столетие геологическая наука наконец-то привела в порядок систему своих знаний и открыла истинное строение Земли.
        Взгляд сквозь недра
        Название геологии переводится с греческого как «наука о земле». Это слишком общее название, одна ко оно справедливо, т. к. геология является комплексной наукой. Она включает в себя множество самых разных дисциплин, изучающих Землю в самых разных аспектах. Петрография, литология, минералогия, геохимия и биогеохимия исследуют породы и их образование в ходе химических процессов; стратиграфия, палеонтология, историческая геология занимаются проблемами эволюции Земли и земной коры; геофизика, тектоника, геодинамика изучают физические процессы на поверхности земли и в ее недрах. И все же не будет ошибкой утверждение, что предметом изучения геологии является строение земных недр.
        Открытие природы месторождений
        Еще первобытный человек, осваивая выплавку металлов, обнаружил для себя, что полезные ископаемые встречаются в земной коре не повсеместно. Разные их виды имеют закономерное расположение. Минералы группируются, образуя месторождения. Месторождения нередко взаимосвязаны между собой и образуют т. н. провинции месторождений - обширные территории, на которых встречаются местами крупные залежи того или иного минерала (породы).
        Концентрирование минералов связано с различными геологическими процессами, длительность которых измеряется миллионами, а иногда и сотнями миллионов лет. Если познать закономерности образования месторождений, то человек сумеет без особого труда находить все новые и новые залежи полезных ископаемых. В средние века их поиском занимались рудознатцы и прочие поисковики, методы которых были довольно примитивны и не давали желаемого результата. Например, зачастую поиски залежей руды и скоплений подземных вод велись посредством т. н. «волшебной рогульки» - свежесрезанного древесного прутика, имеющего форму вилки (У-образную). За раздвоенные концы вилки следовало браться руками, а другую часть прутика водить поднятой над землей. Если лозоходец, как называли такого поисковика, наталкивался на месторождение, то кончик рогульки опускался к земле. Тем самым прутик показывал место, где надлежит копать.
        Ученые полагают, что эффект рогульки действительно иногда срабатывал. Он обусловлен взаимодействием неоднородно распределенных электрических зарядов на теле человека-лозоходца и земной поверхности. Такое взаимодействие улавливалось кожными рецепторами и вызывало слабую мускульную реакцию, незаметную для самого человека. Такие реакции называют психомоторными, их хорошо регистрируют полиграфы (детекторы лжи). Прутик служил своеобразным полиграфом. Одновременно он помогал лозоходцу сконцентрироваться.
        Естественно, способ не совсем пригоден для проведения поисковых работ. Распределение зарядов в природе зависит от массы факторов, и оно не повторяется в одинаковой точности каждый раз. Кроме того, непроизвольные мускульные реакции у разных людей, равно как, впрочем, и степень нервной чувствительности, резко различаются по интенсивности.
        Вот почему по большей части средневековые рудознатцы и прочие поисковики полагались на свою интуицию и объясняли способность находить новые месторождения действием мистических сил земли или горных человечков (гномов и т. д.). Если интуиция бывалого рудознатца не подводила в знакомой местности, то на новом месте, в незнакомой обстановке человек оказывался бессилен что-либо отыскать.
        Сравнительно недавно (около трех столетий назад) начала развиваться научная геология разведки и поиска ископаемых, которая занимается обнаружением и экономической оценкой перспективных месторождений на основе представлений об эволюции земной коры, истории Земли как планеты, причинах образования пород, химии коры и распределении в ней элементов.
        За прошедшие столетия ученым удалось открыть немало поразительных фактов. Почти все залежи ископаемых оказались связанными тем или иным образом с формами рельефа. В этом нет ничего удивительного, поскольку сам рельеф образован под действием геологических процессов. Равнины отличаются от гор, а речные долины от долин ледниковых по той причине, что возникновение этих географических объектов обусловлено совместной преобразующей работой внутренних и внешних сил Земли.
        В результате такой работы происходит смещение слоев пород и их постепенное разрушение, что приводит к изменению облика дневной, как говорят геологи, поверхности. Ведь эта самая дневная поверхность представляет собой не что иное, как вершину толщи каменных слоев, испытывающих преобразования. По мере видоизменения или разрушения пород, а также за счет химической деятельности живых существ и прочих сил природы в разных местностях возникают новые пласты, где скапливаются определенные минералы. Постепенно образуются месторождения.
        История месторождений чрезвычайно увлекательна. Извержения вулканов выносят магматические массы на земную поверхность. Образуются лавовые поля, базальтовые «мостовые», усеянные вулканическими бомбами. Реки наносят пески, гравий, гальку. Ледники переносят валуны. На дне морей накапливаются илы, превращающиеся со временем в перемежающиеся толщи глин, известняков, писчего мела, мергеля.
        Чудовищные давления и температуры в недрах заставляют минералы испытывать физико-химические превращения. Породы там претерпевают метаморфизм. Известняки становятся мрамором, а пески песчаником. Граниты и вовсе превращаются самым необычным образом. Они становятся гнейсами, гранитогнейсами или гнейсогранитами. Различать эти породы настолько сложно, что для них создано общее название - гранитоиды.
        Миграция атомов, химические реакции в земной коре приводят к тому, что породы претерпевают превращения. Скажем, окаменевшие илы превращаются со временем не в обыкновенный известняк, а в доломит. Нередко на земном шаре удается найти настоящие химические реакторы, где идет интенсивное породообразование. Дно почти каждого древнего моря напоминало колбу, в которой бурно протекали всевозможные химические реакции.
        Иногда они значительно отравляли воду своими конечными продуктами, преимущественно сероводородом. Вытеснение кислорода сероводородом и прочими серосодержащими соединениями в придонной морской воде приводило к образованию в илистых отложениях сидерита, кальцита, пирита, гипса и прочих минеральных веществ.
        Все геохимические процессы прямо или косвенно связаны с подвижками неспокойной земной тверди, с ее тектоникой, а стало быть, и глубинным строением. Строение недр в каждой местности сколько-нибудь отличается от такового в соседних областях. Где-то слои смяты в складки, где-то лежат в линию, где-то разорваны на глыбообразные, сдвинутые относительно друг друга блоки. Если бы человек обладал чудесной способностью видеть подземные структуры, то смог бы наблюдать надежно запертые в них скопления руд, нефти, газа, угля и т. д. - месторождения минерального сырья.
        Однако глаза человека на это не способны. Впрочем, зрение человеку здесь и не требуется, поскольку наш разум имеет возможность всегда и при любых обстоятельствах видеть гораздо дальше и больше, чем любой глаз. О глубинном строении земной коры могут многое рассказать хотя бы выходящие на поверхность слои горных пород. Но, конечно же, открыто это было не сразу.
        Датский ученый Н. Стенон первым пришел к мысли о том, что слои в земной коре образуются поэтапно, причем каждый новый перекрывает последующий. Таким образом, самые молодые породы лежат на поверхности, а самые древние залегают глубже всех остальных в недрах. В идеале древнейшие породы никогда не показываются на дневной поверхности, ведь поверх них лежат более молодые слои. На самом же деле пласты пород крайне редко залегают упорядоченно. Обычно они сильно смещены.
        Отличить дислокацию нетрудно, достаточно пройтись по геологическим обнажениям (крупным выходам пород) и внимательно присмотреться к минеральному составу пород. Если в одной и той же местности появляются пласты совершенно разных отложений, то перед нами определенно имеется дислокация. Но какую она имеет природу, каковы ее структура и происхождение? Как можно проследить смещение слоев, заметное на поверхности, далее - в глубь земли?
        Увы, по одному только минеральному составу пород определить все это никак нельзя, а значит, нельзя и оценить перспективность дислокации на наличие каких-нибудь ископаемых. А главное, нельзя определить относительный возраст слоев: трудно сказать, какой слой образовался раньше, а какой позже. Потребовалось еще сто лет после открытия Стенона, чтобы разобраться в этой проблеме.
        В конце XVIII столетия англичанин В. Смит исследовал окаменелости Британии и обнаружил интересную закономерность. Всем известно, что фауны разных стран на земном шаре разнятся между собой. В Африке обитают такие звери, которых не встретишь в Европе. Смит много поездил по Британии и изучал окаменелости одного возраста в самых разных местах. Оказалось, что они тоже отличаются. Но гораздо сильнее выражены различия между животными из отложений разного возраста.
        Чем глубже и древнее отложения, тем более причудливым существам принадлежали найденные в них окаменелости. Эти животные резко отличаются от современных зверей. Сначала попадаются кости мамонтов, потом еще более причудливых млекопитающих, затем гигантских ящеров, необычных рыб. И все это нередко удается найти на одном обнажении.
        Позднее геологи, в первую очередь великий англичанин Ч. Лайель, нашли объяснение загадке Смита: за всю историю Земли фауны сменяли друг друга - вымирали одни животные, и на их место приходили другие. Поэтому в каждом слое встречаются окаменелые останки совершенно отличных друг от друга созданий. Окаменелости указывают на точный возраст слоя, позволяя четко определить его расположение относительно окружающих пластов.
        Метод такого определения возраста и, следовательно, точного положения слоя относительно других в разрезе земной коры получил название стратиграфического. Гораздо чаще его называют биостратиграфическим, поскольку он опирается преимущественно на палеобиологию (палеонтологию) - науку о древних организмах, чьи останки удается отыскать в слоях горных пород. Каждому слою присуща собственная фауна, которую специалист не спутает с фауной других отложений.
        Стратиграфия значительно облегчает поиск месторождений. Причиной тому служит не единственно то, что она указывает на глубинные геологические структуры в недрах. Оказывается, разные виды полезных ископаемых образовались в различные эпохи земной истории. Все эти знания имеют огромное практическое значение, потому что именно благодаря им определяют места поиска тех или иных залежей. На базисе этих теоретических разработок были созданы технологии разведки и поиска месторождений.
        Изобретена техника поиска полезных ископаемых
        Самый простой способ изучения земных недр с использованием богатого теоретического материала заключается в тщательном обследовании всех обнажений пород, встречающихся на поверхности. Но данный метод является лишь началом трудоемкой работы по проведению геологических изысканий. Ярким примером, иллюстрирующим работу геологов-поисковиков, служит разведка и обнаружение нефти в Поволжье. Поволжские месторождения оказались столь богатыми, что их некогда называли «Вторым Баку».
        А ведь первоначально геологи посчитали, что Поволжье совершенно бесперспективно в отношении «черного золота». Это мнение установилось после исследований, проведенных во второй половине XIX столетия. Уже тогда ученые догадались, что нефть активно движется в земной коре и образует месторождения лишь в том случае, когда что-то препятствует ее продвижению. В недрах должны находиться особые геологические структуры, являющиеся ловушками для этой маслянистой жидкости. Позже удалось составить представление об устройстве такой ловушки.
        Она представляет собой слой породы-коллектора, перекрытый сверху породой-покрышкой. В качестве коллектора выступает песок, энергично вбирающий в себя нефть. Покрышку образуют плотные известняки, сквозь которые нефть не просачивается. В целом ловушка представляет собой крупную дислокацию в виде внушительной складки. Эта складка образует под землей купол, в верхней части которого и скапливается нефть. Она под давлением стремится покинуть толщу пород, но покрышка не дает жидкости такой возможности.
        Когда во второй половине XIX в. геологи обследовали Жигули и Нижнее Поволжье, то они не нашли здесь серьезных дислокаций. Выходящие на поверхность слои известняков они приняли за отложения возрастом 100 млн лет и ошиблись при этом почти в 3 раза. Только в 1880-х гг. ошибка была исправлена. А. П. Павлов провел повторное обследование пород, слагающих недра Поволжья. Изучив известняки Самарской луки, ученый обнаружил там останки организмов, обитавших на нашей планете примерно 300 млн лет назад.
        Следовательно, возраст известняков сильно приуменьшили, а это говорит о том, что Жигулевские горы возникли в результате крупной дислокации земных пластов. Слои оказались сильно сжаты в складки, оттого на поверхность были «выдавлены» отложения столь значительного возраста. Подобные смещения содержащих известняк слоев могут таить в себе ловушки нефти. В 1930-х гг. в местах, которые Павлов счел перспективными, провели пробное бурение, в результате чего удалось найти месторождения нефти и связанные с ними скопления природного горючего газа.
        Разведочное бурение является еще одним из способов увидеть глубинные структуры. Одним из его приемов является радиоактивный каротаж. «Атомный» XX век подарил геологам ядерно-физические методы поиска и разведки месторождений полезных ископаемых. Геологи в своем выборе опять-таки исходили из представлений о строении, составе и механизме образований залежей ископаемых.
        Что же представляет собой каждое месторождение с физической точки зрения? Оказывается, это особое тело в земной коре, обладающее явно выраженными аномальными свойствами.
        Месторождение является комплексом разнообразных отклонений, поскольку в процессе своего формирования под действием специфических физико-химических процессов оно подвергло влиянию окружающие породы и изменило их свойства. Месторождение выглядит иначе, чем окружающее вещество, если принимать в расчет магнитные поля, электропроводность, плотность, гравитационные свойства. Аномалии, связанные с месторождениями, отчетливо проявляются при изучении недр с помощью методов ядерной физики.
        Радиоактивные излучения и ядерные частицы совершенно иначе взаимодействуют с такими телами в земной коре. Излучение как бы просвечивает недра, делает их рентгеновский снимок. На самом деле, конечно же, просветить толщу камня невозможно. Просто активные лучи приводят к ядерным реакциям в облученном веществе.
        Современная разведка применяет для подобного ложного просвечивания несколько родов частиц. Во-первых, это нейтроны, во-вторых, гамма-кванты (кванты жесткого гамма-излучения), в-третьих, электроны. Последние используются нечасто. Из всех ядерно-физических методов разведки наиболее широко применяется и дает замечательные результаты радиоактивный каротаж скважин, в т. ч. гамма-каротаж.
        Термин «каротаж» происходит от французского слова, означающего «морковка». На морковки похожи керны - столбики породы, выдолбленные в стволе проходки режущим инструментом буровой установки. Эти столбики поднимаются на поверхность и тщательно исследуются в физических и химических лабораториях. Иногда внутри таких образцов удается обнаружить интересные минералы или окаменелости, но чаще всего длительные исследования столбиков оказываются безрезультатными.
        Чрезвычайно информативным является метод радиоактивного каротажа. Если облучить породы внутри проходки, даже не извлекая их на поверхность в виде кернов, то можно получить не менее, а иногда и более исчерпывающие данные. В любом случае применение каротажа позволило значительно снизить вероятность ошибки, которая чревата тем, что перспективное месторождение окажется не найденным.
        Техника радиоактивного каротажа заключается в проведении анализа пород, разрез сквозь толщу которых создала проходка буровой скважины. Для этого необходимо опустить в пробуренную скважину ядерно-физический прибор, совмещающий в себе источник и одновременно детектор активного жесткого излучения. Обе составные части прибора разделены друг от друга защитным экраном, который не допускает, чтобы лучи от источника попадали на детектор.
        Таким образом, детектор способен улавливать исключительно те частицы проникающего излучения, которые рождаются при бомбардировке породы лучами из источника. Источник глубинного прибора специально с этой целью заправляется нестабильными изотопами цезия или кобальта, а иногда и некоторых других элементов. Для получения потока нейтронов используется сложная смесь радиоактивных бериллия и полония. Полоний, распадаясь, испускает альфа-частицы. Они попадают в бериллий, возбуждая в нем ядерные реакции, завершающиеся испусканием нейтронов.
        Источник может, т. о., испускать два вида лучей - поток гамма-квантов и поток нейтронов. Облучаемые горные породы испускают в ответ нейтроны или гамма-лучи. Таким образом, детекторы также различаются на два типа - приемники нейтронов и приемники гамма-квантов. Возможны разные сочетания детекторов и источников в зависимости от задач разведки.
        Различается n - n-каротаж, n - ?-каротаж и ? - ?-каротаж. В первом случае источник испускает нейтроны (n), на прием этих же частиц рассчитан и детектор глубинного прибора. При проведении ? - ?-каротажа источник испускает гамма-лучи (?), а детектор принимает гамма-лучи, идущие из породы. Наконец, n - ?-каротаж означает, что источник испускает или нейтроны, или гамма-кванты, а детектор принимает излучение противоположного типа.
        Кроме того, существует гамма-каротаж, который используется при измерении фоновой радиоактивности горных пород, связанной с излучением гамма-квантов. В разных веществах, составляющих горные породы, протекают разные ядерные реакции. Поэтому по продуктам таких реакций можно с высокой точностью судить о присутствии в проходке тех или иных минералов.
        Гамма-каротаж позволяет легко обнаруживать глины, которые обладают повышенной природной радиоактивностью. Подземные воды обнаруживаются с применением нейтронов (n - n- и n - ?-каротаж). К слову, посредством детекторов нейтронов уже проводились успешные поиски грунтовых вод на Луне, о чем рассказывалось выше. Угольные пласты выявляются с помощью ? - ?-каротажа. Техника описанного радиоактивного каротажа скважин была впервые предложена в 1941 г. отечественным физиком Б. М. Понтекорво, академиком впоследствии. С тех пор методика была значительно усовершенствована.
        Раскрываются тайны земного рельефа
        Лицо человека, верили древние физиогномисты, несет неизгладимый отпечаток пережитого и знак неотвратимой судьбы. Переменчивый облик планеты отражает все исторические потрясения. Земной рельеф был сформирован различными геологическими силами, которые проявляют себя и ныне. В 1963 г. жители Исландии наблюдали рождение вулканического острова Суртсэй. Жители приморских районов Калифорнии ежедневно наблюдают разрушение песчаных пляжей. Рельеф выдает человеку секреты земной истории и рассказывает о сокровищах, скрытых глубоко в недрах.
        Открытия геоморфологии
        Слово «рельеф» было заимствованно из французского языка, где изначально обозначало неровность, выпуклость. Долгое время рельефами называли исключительно выделяющиеся, объемные лепнины и резные украшения на поверхности стен и изделий. В наше время слово приобрело новое значение, которое значительно потеснило прежнее и стало основным. Рельефом в географии и смежных с ней науках называется совокупность всех форм и структур земной поверхности, образующих географические объекты или, если рассматривать в целом, ландшафтные комплексы.
        Изучение рельефа позволяет выявить закономерности соответствия разных географических объектов и залежей ископаемых. Поскольку земной шар велик, то в разных его областях протекают несходные геологические процессы - землетрясения, вулканические извержения, накопление илов в реках или торфа в болотах и пр. Это приводит к образованию неодинаковых глубинных структур земной коры. В результате в разных местностях возникают условия для появления строго определенных видов ископаемых. Другие виды минерального сырья здесь уже образоваться не могут, их следует искать в другом месте.
        Но те же самые геологические процессы, которые приводят к образованию полезных ископаемых, завершаются возникновением каких-либо форм рельефа. Причиной тому является тот факт, что земная поверхность (геологи называют ее дневной, т. е. освещаемой лучами солнца) представляет собой своеобразную крышу исполинского строения - каменной коры нашей планеты. Практически любые изменения и перестройки на «этажах» земной коры завершаются преобразованием дневной поверхности.
        Передвижения блоков, размывание толщи пород, рождение и разрушение глубинных структур, накопление химических и органических осадков вместе с обломочным материалом приводит к тому, что земная поверхность оказывается испещренной различными формами. Среди этих форм впадины, рвы, каньоны, горы, утесы, рифы, обрывы, равнины, низменности и пр. Все эти неровности в совокупности составляют рельеф планеты и отдельных ее местностей.
        Главными формами континентального рельефа являются равнины, высокие возвышенности (горы), занятая океаническими водами зона материковой отмели, или шельфа. Равнины по геологическому строению могут являться поверхностью таких крупных геологических структур, как щиты и платформы. Платформы перекрыты мощным осадочным чехлом, т. е. толщей осадочных пород, лежащих поверх кристаллического фундамента. Щиты почти полностью лишены осадочного чехла и представляют собой обширные выходы кристаллического фундамента на дневную поверхность.
        Осадочный чехол платформ может содержать угли, нефть, газ, прочие полезные ископаемые, строительный камень, гипс. Щиты богаты месторождениями железных руд. Горные районы, занимающие до 30 % поверхности суши, различаются по возрасту. Земля пережила несколько эпох горообразования. Наиболее молодые горы богаты полиметаллическими рудами, иногда недра таких гор содержат немало строительного камня.
        Древнейшие горы испытывают в настоящий момент разрушение, хорошо заметное по ряду признаков. Они представляют собой наиболее богатые полезными ископаемыми структуры, поскольку в таких областях на протяжении сотен миллионов лет протекали интенсивные геологические процессы. Здесь находятся месторождения полиметаллических руд, включая железо, никель, уран, медь, ртуть, а также золотые, платиновые и алмазные россыпи.
        Наконец, существуют т. н. омоложенные горы, т. е. такие, которые имеют солидный возраст, но испытывали несколько поднятий и не успели значительно разрушиться. Здесь тоже в изобилии встречаются руды черных и цветных металлов, всевозможные россыпи, коренные месторождения алмазов и благородных металлов. Впрочем, существует и другая классификация гор, основанная на глубинном строении их недр.
        Различают глыбовые (глыбообразные), складчатые и куполообразные горы. Первые возникают при резких вертикальных подвижках отдельных блоков земной коры. Вторые рождаются при сжатии земных слоев в складки, третьи появляются в местах внедрения в земную кору горячих магматических тел - батолитов, происходящих из более глубокого расплавленного вещества планеты. Что касается материкового шельфа, представляющего область континента, занятую океаническими водами, то здесь в осадочном чехле часто встречаются богатейшие месторождения газа и нефти.
        Изобретена техника аэро- и космофотосъемки

«Находясь на высоте двух с половиной тысяч метров, мы были поражены, увидев под собою прекрасную карту мелей, глубоководной воды и фарватера. Воистину, перед нами раскрыта гигантская географическая карта», - так сообщает о своих впечатлениях один из первых аэронавтов. Поднимаясь на монгольфьерах, эти смелые люди увидели землю совершенно другой.
        Конечно, наземные наблюдения крайне необходимы, однако они не дают человеку достаточного количества информации. По-настоящему исследовать земную поверхность можно только с большого расстояния, когда она предстает в совершенно новом виде. Всякий, кто знаком с творчеством художников-пуантилистов, прекрасно понимает, о чем идет речь. Пуантилизм сводится к тому, что картины составляются из крупных бесформенных мазков. Стоит зрителю отойти подальше от полотна, как мазки сливаются во вполне реальное изображение.
        Нечто подобное происходит и при наблюдении суши с воздуха. Высота позволяет увидеть много нового. Разрозненные детали сливаются в единое целое, крупные формы преобладают и предстают в истинном свете, мелкие детали исчезают. Генерализация безусловно является главным достоинством воздушных наблюдений. Образы ландшафтов предстают перед человеком как подробнейшие карты, лишенные всяческих пунктиров и искусственных контуров.
        Наглядность - другое, не менее важное достоинство такого метода географических и геоморфологических изысканий. Несмотря на генерализацию, человек видит все как есть. Никаких белых пятен, условных значков, никаких обманчивых цифр или линий. Третье существенное достоинство метода заключается в широте обзора. Только с воздуха, например из корзины монгольфьера или гондолы дирижабля, можно охватить взглядом сразу большую площадь и верно оценить расположение на ней разнообразных объектов.
        Однако увидеть мало. Для полноценных исследований требуется еще и запечатлеть увиденное. Это стало возможным после изобретения фотографической техники в конце XIX в. Первым провел фотографирование земли с воздуха один из пионеров авиации, фотограф и журналист Надар. Близкий друг Ж. Верна и прототип многих героев романов писателя, Надар полностью разделял его мнение о необходимости начать изучение земли с высоты птичьего полета.
        В 1880-х гг. воздушные съемки проводятся во многих странах. В 1886 г. аэрофотосъемка была впервые осуществлена в России. Тогда командир I военно-воздухоплавательной части А. М. Кованько совершил полет на воздушном шаре над Санкт-Петербургом и сделал несколько фотографий города. Дальнейшее развитие аэрофотосъемка получила только в XX в., поскольку именно в новом столетии появилась необходимая для таких работ фотографическая техника.
        Однако научного интереса воздушные фотографии почти ни у кого не вызывали. Многие видели в снимках разновидность фотоискусства, ценные материалы попадали в журналы по современной живописи. Зато методом заинтересовались военные. Уже во время русско-японской войны 1904 -1905 гг. нашими мастерами аэрофотосъемки выполнялись разведывательные снимки, данные с которых использовались в военных операциях. Несомненная польза аэрофотографий в военном деле была своевременно оценена на Западе, и во время Первой Мировой войны воздушный шпионаж достиг невиданного размаха.
        Только в середине 1920-х гг. географический метод впервые применили для изучения состояния лесного хозяйства, а также в картографических целях. На конец 1920-х - начало 1930-х гг. приходится появление внезапного интереса к аэрофотосъемке. Выполняются первые фотографии болот, рек, растительности, рельефа. Высокое качество фотографий рельефа привлекло к себе внимание геологов. Снимки содержали массу уникальных геоморфологических данных, которые невозможно было получить путем непосредственных замеров или наблюдений.
        Научная ценность фотографий состоит прежде всего в том, что некоторые данные аэрофотосъемки получить никаким другим путем нереально. К примеру, никак нельзя определить по обычной карте происхождение того или иного ландшафта. Воздушные фотографии показывают, каким материалом сложены элементы поверхности, в результате каких процессов они сформировались, как взаимодействовали друг с другом на протяжении тысячелетий.
        По фотографиям сравнительно легко отличить аллювиальные (намывные) равнины от денудационных (выветрелых).
        На снимках видны протекающие в настоящий момент процессы: выветривание пород, размывание берегов, движение дюн. Высохшие и заросшие лугами русла рек показывают, где в прошлом была вода и могут находиться сейчас запасы грунтовых вод. Линии моренных валунов маркируют собой границы ледников. Выходы пород разного состава зачастую отчетливо различимы. По этим выходам нетрудно вообразить строение недр местности.
        Реки и возвышенности являются лучшими помощниками геологов, когда требуется заглянуть в недра Земли. Смещения блоков и складки пластов заметны на поверхности по рельефу возвышенных участков и по водоразделам. Реки прокладывают русла вдоль границ глубинных структур. Поднятия, плато и горы своим наружным строением, которое доступно подробному изучению только с воздуха, выдают наличие тех или иных структур на большой глубине, под ровной и почти гладкой толщей осадочного материала.
        Поскольку геологические структуры и геоморфологические образования зачастую служат подземными кладовыми или маркерами таких кладовых, то аэрометоды дают информацию о месторождениях или районах, перспективных на какой-то вид ископаемых.
        Например, Прикаспийская низменность никому прежде не казалась уникальным геологическим образованием, с которым можно связать какие-то перспективные месторождения. Фотографирование показало, что здешняя поверхность сложена мощной толщей осадочных пород. Они были нанесены частично Волгой, которая неоднократно меняла свое русло и откладывала в своей дельте тонны илов и обломочного материала, а частично самим Каспием. Самое большое на планете озеро, которое правильнее называть озером-морем, неоднократно разливало свои воды по всему нижнему течению Волги, доходя до окрестностей Саратова.
        Могучая толща осадков заполняет исполинскую котловину, образованную подвижными блоками кристаллического фундамента. Эти древнейшие блоки земной коры, на которые наслаиваются осадочные отложения рек, озер и морей, в Прикаспийской низменности гигантскими ступенями уходят вниз. Обширный провал имеет глубину свыше 12 000 м! Это означает, что в гигантскую впадину легко поместятся величественные Гималаи и даже океанические вулканы Гавайских островов.
        Аэрофотосъемка Прикаспийской низменности выявила солевые купола, на месте которых возникли соленые озера типа Эльтона и Балахаша, выявила характер залегания осадочных пород и прочие интересные подробности. Геологи, привлеченные необычным строением местности, провели исследование нескольких перспективных районов. Особое внимание они обратили на Апшеронский полуостров, где впоследствии в мощной толще древнейших волжских наносов, получившей название «Продуктивная», удалось найти нефть.
        Несмотря на совершенство аэрометодов, в последнее время не менее важное значение приобретает космофотосъемка. Она дает ученым возможность охватывать вниманием гораздо большие площади земной поверхности, вплоть до всего земного шара. Космические фотографии несут генерализованное изображение деталей рельефа. В каком-то смысле сильное обобщение изображения можно считать большим недостатком.
        Но геологи, правильно анализируя получаемую информацию, умеют извлекать из этого недостатка большую выгоду. При высокой степени генерализации, которую обеспечивает космофотосъемка, видны громадные геоморфологические структуры. Никакими наземными методами, а также аэрометодами эти структуры изучить невозможно. Лишь из космоса становится заметным, как сливаются разнообразные комплексы пород в более сложный агрегат.
        Впервые фотографию рельефа Земли из космоса сделал 6 августа 1961 г. «второй» (т. е. второй после Ю. Гагарина) космонавт Г. Титов с борта корабля «Восток-2». Принято считать этот знаменательный день датой рождения космофотосъемки. Но при этом нужно заметить, что становление геологической косморазведки произошло гораздо позднее, а именно - 13 октября 1964 г. Тогда на борту корабля «Восход» космонавты В. М. Комаров, Б. Б. Егоров и К. П. Феоктистов выполнили первый в истории человечества эксперимент по геологическому фотографированию земной поверхности. В частности, были засняты обширные районы Тибета, не исследованные до того времени не только геологами, но даже географами.
        Космофотосъемка просматривает недра планеты на невероятные глубины, вплоть до границы Мохоровичича. Естественно, камень не становится прозрачным, с какой бы занебесной высоты на него не смотрел человек. Но этого от земной коры и не требуется. Космические фотографии выявляют гигантские структуры, уходящие глубоко в недра и являющиеся элементами строения кристаллического фундамента громадных платформ, складывающих материки. Таким образом, наблюдения с орбиты помогают увидеть детали строения нижних этажей земной коры, перекрытых мощной толщей осадков и обломочного материала.
        В числе наиболее примечательных структур следует назвать линеаменты, иначе, линейчатые структуры земной коры. Они возникают на границах литосферных плит, в местах наиболее существенных подвижек, сопровождающихся разломами. Линеаменты являются как бы поверхностным отображением глубинных разломов коры. Эти образования возникают при разрывах коры в области рифтовых долин.
        Техника космической съемки позволяет при разном масштабе фотографий выявить линеаменты разных размеров, природы, происхождения и значения. С линейчатыми структурами связана история планеты, процессы горообразования, сейсмическая и вулканическая активность, образование ряда полезных ископаемых. Изучение этих структур крайне необходимо для познания законов геологии.
        Слышать Землю
        Всякий раз, когда популяризаторам науки случается говорить о головокружительных ее успехах, неизменно звучит фраза о том, что приборы стали продолжением нашего взгляда. Благодаря этому, а в еще большей степени благодаря знаниям, которые служат продолжением нашего внутреннего зрения, люди могут видеть все. Повторяется в популярных книгах и классическое изречение: хотя орел видит дальше, чем человек, человек видит больше, чем орел!
        Спорить с этим нельзя, да и незачем. В заключительном разделе книги хотелось бы оттолкнуться от рассуждений об остроте нашего зрения и прояснить вопрос об остроте нашего слуха. Слышит ли человек настолько хорошо, чтобы прослушивать, например, насквозь Землю?
        Открытия сейсмологии
        Сейсмология - наука о подземных толчках и землетрясениях. Ранние сейсмологические представления были присущи всем народам, знакомым с внутренними стихиями Земли. Древние греки полагали, что сотрясения суши вызываются чудовищными волнами, насылаемыми на берега властителем морской стихии, богом Посейдоном. Более поздние воззрения не отличались оригинальностью. Люди по языческой традиции долгое время связывали катастрофические подземные толчки с деятельностью высших сил, которых чем-то прогневало грешное человечество. Впрочем, уже в те времена возникла потребность изучать и систематизировать сведения о подземных сотрясениях.
        Первоначально эти сведения заносились в хроники и только потом стали изучаться геологами. Всего мировая летопись содержит сведения о 2574 катастрофических землетрясениях и десятках тысяч сравнительно малых сотрясений. Серьезные исследования страшного природного явления начались в XVIII столетии. Интерес к нему был вызван толчком чудовищной силы. В 1755 г. произошло Лиссабонское землетрясение, одна из самых страшных катастроф в истории человечества.
        Великий И. В. Гете стал невольным свидетелем катастрофы. Тогда он был еще ребенком и впоследствии записал свои детские впечатления: «Священники в проповедях говорили о небесной каре. Мальчик, которому пришлось неоднократно слышать подобные разговоры, был подавлен. Господь Бог, вседержитель неба и земли, совсем не по-отечески обрушил кару на правых и неправых». Маленький Гете проникся настроениями, которые были распространены среди людей. Катастрофа заставила многих трезво взглянуть на природные катаклизмы и увидеть в них прямое следствие необратимых геологических процессов.
        Уже в 1757 г. М. В. Ломоносов, увлекшись ростом ранних сейсмологических исследований, пишет свой труд «О рождении металлов от трясения Земли». Великий русский ученый прекрасно понимает, что кажущаяся спокойной земная твердь весьма активна. Подвижность является естественным состоянием земной коры. Оттого слои горных пород не лежат по линейке. Незачем искать развалины городов, якобы наказанных небом, чтобы наблюдать в руинах следы сейсмических толчков.
        Почти любой участок планеты несет в себе отпечаток недавних или древнейших каменных штормов, которые бушевали задолго до того, как эти места были заселены человеком. Ломоносов выражает свои мысли следующим образом: «Все лицо земное исполнено явственными сего доказательствами. Где токмо не увидишь с расселинами горы; тут оставшиеся следы земного трясения быть не сомневаться».
        Итак, сотрясения коры планеты происходят сами по себе, без вмешательства высших сил. Глубинные толчки беспокоили мир за миллионы лет до появления на Земле человека, меняя облик ландшафтов.
        Вплоть до XX в. ученые не могли точно охарактеризовать подземную стихию. Да и сейчас многое в сейсмологии по-прежнему остается делом будущего. Однако накоплено уже немало сведений. Если из глубин Вселенной информацию о происходящих там процессах до нас доносит свет, то информацию о событиях, протекающих в сердце массивного тела Земли, могут сообщить сейсмические толчки.
        Они порождены глубинными явлениями, неведомыми человеку, и потому отражают самую суть этих явлений, служат прямым последствием тектонических подвижек земного вещества. Каждое землетрясение порождает колебания пород, т. н. сейсмические волны, которые по своей природе близки звуковым. Идея прослушивать посредством приема этих колебаний планетные недра зародилась на рубеже XIX -XX вв., а стала целенаправленно реализовываться в начале XX столетия.
        Одним из пионеров прослушивания недр являлся хорватский ученый А. Мохоровичич. Проводя свои изыскания в 1909 г., он пришел к знаменательному открытию. Тогда уже было многим известно, что скорости волн растут с глубиной. Этому существовало разумное объяснение. Каменное вещество по мере повышения давления в недрах уплотняется, а в более плотной среде колебания идет быстрее. Мохоровичич обнаружил, что сейсмические волны, приходящие с глубины около 50 км, внезапно повышают свою скорость на значительную величину.
        Следовательно, на данной глубине происходит раздел сред, иными словами, поразительный скачок плотности вещества. Граница была названа в честь первооткрывателя, а ученые с большим интересом начали прослушивать Землю в надежде заглянуть глубоко в недра. К исследованию строения планеты подключился американский ученый Б. Гутенберг, который в 1914 г. порадовал мир новым открытием. На глубине порядка 2900 км происходит очередной скачок плотности, но на сей раз вещество становится менее плотным. На это указывала изменившаяся скорость продольных сейсмоволн.
        Медленные поперечные волны были целиком поглощены глубинным слоем. Данные измерений недвусмысленно указывали на то, что сердцевина планеты образована жидкостью. Поскольку жидкие вещества почти несжимаемы, то плотность здесь оказалась весьма низкой. Планета обладала очень необычным строением, но и это не смущало геофизиков. Наиболее поразительным оказалось другое. Волны, проходившие сквозь жидкость, преломлялись несколько раз, как если бы по пути преодолевали какую-то новую среду. Любопытно, что и скорость после очередного преломления возрастала.
        Найти объяснение этому явлению удалось лишь в начале 1930-х гг., когда датский сейсмолог И. Леман завершила свои измерения. Она показала, что странный ход сейсмических колебаний вызван присутствием в центре Земли твердого и очень плотного ядра. Итак, Земля имеет двойное ядро. Позднейшие измерения, гораздо более точные, выявили следующее. Земля сложена несколькими слоями плотного вещества, неоднородными по химическому составу.
        В период своего образования наша планета представляла собой сгусток космической туманности, в котором химические элементы были распределены равномерно по всему объему. По мере формирования планеты из этого сгустка элементы, в зависимости от своей массы, перемещались в предпочтительном направлении. Легкие атомы выдавливались наверх гораздо более тяжелыми, происходило расслоение земного вещества.
        В результате поверхностный слой оказался сложенным преимущественно кремнием и алюминием. Этот слой получил название земной коры. Каменные породы коры являются, как ни странно, наименее плотными веществами. Ниже, за границей Мохоровичича, называемой еще границей Мохо, расположена мантия. Она образована преимущественно более тяжелыми соединениями кремния и магния. Она неоднородна, но распадается на два слоя - верхнюю и нижнюю мантию. Начинается мантия на средней глубине 30 -33 км.
        Данная цифра условна, поскольку толщина земной коры неодинакова на всем ее протяжении. Под океанами мощность коркового вещества колеблется в пределах 4 -15 км, а под континентами достигает в среднем 30 -50 км, при максимальном значении 70 км. Температура мантийного вещества колеблется от +400 до +4000 °C, отчего оно пребывает в полурасплавленном, вязком и тягучем состоянии. Плотность этого расплава очень велика. Верхняя мантия, простирающаяся до глубины примерно 1000 км, пребывает под давлением минимум 900 млн Па, что в 900 раз выше атмосферного.
        Мантийное вещество, обладая значительной пластичностью, пребывает в постоянном движении. Наиболее существенны среди всех потоков в области мантии т. н. конвекционные токи. Эти мантийные течения можно сравнить с бурлением кипятка в кастрюле. Природа их совершенно одинакова. Вещество мантии нагревается на больших глубинах, близ горячего ядра, в результате чего в этом слое рождаются вертикальные раскаленные потоки. Они достигают верхней области мантии, где остывают и растекаются в разные стороны в горизонтальном направлении.
        Остывающие течения приводят в движение литосферные плиты, слагающие земную кору. Подвижки плит вызывают, в свою очередь, землетрясения, вулканические извержения, процессы горообразования и т. д. Наиболее внушительным последствием таких подвижек является дрейф континентов, последствия которого заметны лишь по прошествии многих миллионов лет. Материки медленно передвигались по поверхности мантийного слоя, сочетаясь друг с другом необычным образом и меняя свои очертания.
        Земля былых геологических эпох не была похожа на современную. Скажем, 250 млн лет назад вся суша планеты была объединена в единый суперконтинент Пангею. Последние исследования показали, что задолго до того неоднократно происходили образования и распады великих сверхконтинентов, сходных с Пангеей. Ей предшествовали, поочередно сменяя друг друга, Метагея, Мегогея и Мезогея.
        На глубине 1000 км происходит скачок плотности вещества с 4000 до 4600 кг/м^3^. Давление здесь возрастает до отметки 40 млрд Па (в 400 000 раз выше атмосферного). Глубже залегают слои нижней мантии, плотность вещества которой составляет в среднем порядка 5000 кг/м^3^, а температура равняется +3500 °C. В целом мантийное вещество насчитывает 65 % от массы всей планеты, остальное приходится преимущественно на вещество ядра. Земная кора составляет по массе менее 1 % от массы планеты.
        Жидкое внешнее ядро, богатое кислородом и тяжелыми элементами, преимущественно опять-таки кремнием, начинается на глубине 2900 км. Здесь происходит под давлением 136 млрд Па скачок плотности вещества с 5700 до 9700 кг/м^3^. Температура на поверхности ядра равняется +4200 °C, а с глубиной повышается до +5500 °C. В области этих максимальных температур, соответствующих отметке глубин 4500 км, плотность вещества равняется 11,4 т/м^3^, а давление 320 млрд Па.
        Глубже 5000 км залегает железоникелевое, твердое внутреннее ядро. На его поверхности происходит скачок плотности с 12,5 до 12,7 т/м^3^. Температура здесь достигает примерно +6000 °C. В железистом ядре находится центр планеты. Он расположен на глубине 6371 км, т. о., если бы человек имел возможность спуститься сюда по лестнице, то этот спуск занял бы около 2 месяцев. Эта область характеризуется следующими параметрами: давление 370 млрд Па (в 3,7 млн раз больше атмосферного), плотность вещества 13 т/м^3^, температура выше +610 °C, что много больше температуры на поверхности Солнца!
        Изобретение сейсмографа
        Когда люди столкнулись с проявлениями подземной стихии, мыслители и изобретатели попытались найти способы определить время начала землетрясения. В дальнейшем возникла потребность вычислить место его максимальной активности (эпицентр), силу толчков и направление их движения. Первыми попытались регистрировать признаки надвигающихся каменных штормов древние греки. Греческие геометры и философы предлагали различные способы для осуществления этой цели.
        Бытует мнение, что греки даже разработали сейсмограф - прибор для регистрации колебаний почвы. Но никакими детальными сведениями об этом ученые не располагают. Достоверно можно утверждать лишь то, что греки прекрасно знали о способности многих животных улавливать сейсмические толчки. Античные хроники 323 г. до н. э. отмечают: «За несколько дней до землетрясения, разрушившего город Геликос, кроты, ласки, ехидны и сороконожки вышли из своих норок, обратившись в беспорядочное бегство».
        Первый настоящий сейсмограф был сконструирован китайским астрономом Чжан Хэном 1870 лет назад, в 132 г. К сожалению, устройство не сохранилось до настоящего времени, однако китайские историки сумели реконструировать его облик по старинным летописям. Согласно традициям того времени, прибор был украшен скульптурными изображениями животных, причем эти скульптуры одновременно служили деталями конструкции. Предположительно фигурки изображали драконов и лягушат (жаб) или каких-то еще зверей.
        Прибор выглядел следующим образом. Он был отлит из бронзы и представлял собой сосуд диаметром 2 м. Внутри сосуда располагался высокочувствительный маятник, реагировавший на подземные толчки на расстоянии до 600 км от места максимальной активности. Улавливая сейсмические колебания, маятник приходил в движение. Он был соединен специальными тягами, выполнявшими функцию опорных рычагов, с указателями сторон света и основных румбов. Всего сейсмограф содержал 8 указателей, определявших направление хода колебаний грунта.
        Эти указатели соответствовали румбам: север, северо-восток, восток, юго-восток, юг, юго-запад, запад и северо-запад. В зависимости от направления толчков и, следовательно, от расположения эпицентра маятник начинал колебаться в определенной плоскости и посредством какой-то тяги приводил в движение нужный указатель. Последний, видимо, изготавливался в форме головы дракона, держащего в зубах металлический шарик. Головы были обращены в направлении 8 выбранных румбов. Если толчки приходили с северо-востока, то маятник заставлял двигаться драконью голову, обращенную на северо-восток.
        Когда голова приводилась в движение, шарик выскальзывал из раскрывавшихся металлических челюстей дракона и падал в специальную небольшую чашу (тарелочку). Всего вокруг основания прибора на земле устанавливалось 8 чаш, по одной на каждую голову. Чаши были выполнены в форме лягушат с широко открытыми ртами. Таким образом, выпавший из драконьей пасти шарик попадал в рот восседавшего под указателем лягушонка. Астроном проверял, в какую чашу упал шарик, и тем самым узнавал о направлении сейсмических волн в грунте.
        Одним из первых европейских сейсмографов был сейсмоскоп итальянского изобретателя Н. Кассиатори. Построенный в 1848 г., этот прибор принципиально не отличался по принципу действия и конструкции от сейсмографа Чжан Хэна. Устройство также было снабжено указателями направления толчков, только на этот раз его детали не были выполнены в виде зверей. В 1856 г. более совершенное устройство установили на Везувии. Сейсмограф измерял, помимо прочего, амплитуду волн и время толчка.
        На протяжении 1890-х гг. впервые активно разрабатываются и создаются разные модели вертикального сейсмографа с инертной (инерционной) массой. Последняя представляет собой подвесной груз, слабо реагирующий на вертикальные толчки. Во время землетрясения корпус сейсмографа колебался, тогда как сама инерционная масса оставалась почти неподвижной. Ее положение относительно колеблющегося корпуса отмечалось самописцем на угольной ленте. Таким способом ученые получали диаграмму землетрясения.
        Устройства такого рода, изготовленные в 1890-х гг., являются настоящими сейсмографами, тогда как приборы Чжан Хэна и Кассиатори в действительности представляют собой сейсмоскопы. Название сейсмографа в переводе с греческого означает «пишущий сотрясения земли», а сейсмоскоп - «видящий сотрясения земли». В популярной литературе оба вида приборов принято называть сейсмографами. Посредством новых сейсмографов были получены ценные данные о характеристиках разных катастроф - землетрясении 1894 г. в Японии, подземных катаклизмах 1897 г. в Индии и т. д.
        Конструкция сейсмометра была затем существенно усовершенствована в 1900-х гг. академиком Б. Б. Голициным, который заложил основы современной сейсмологии. Он же первым понял, что сейсмические толчки как бы простукивают планету насквозь и помогают тем самым заглянуть в ее недра. Землетрясения Голицин сравнил с ярким лучом фонаря, высвечивающим глубинное строение Земли.
        Приборами нового образца с 1920-х гг. оснащаются сейсмические станции, которые открываются по всему миру. Очередной значительный прорыв сейсмологии произошел в начале 1960-х гг. В 1960 г. разбросанные по разным уголкам планеты сейсмостанции были объединены во Всемирную эталонную сейсмографическую сеть, которая стала работать по одному временному графику и пользоваться определенными техническими стандартами. Это позволило успешно обобщать данные сотен измерений.
        В 1962 г. впервые высокочувствительные сейсмографы были испытаны в районах, где отсутствует опасность землетрясений. Ученые хотели узнать, насколько серьезны подвижки земной коры, приводящие к катастрофам. Измерения проводились в европейской части России, главным образом в Поволжье. Оказалось, что ничтожно малые подвижки блоков коры все же создают порядочный фон малых колебаний, т. н. фон микросейсм.
        Измерение микросейсм позволило узнать много нового о движениях литосферных плит и о возникновении очагов сейсмической активности. Малые землетрясения прояснили вопросы, связанные с геологической историей планеты. В наши дни при строительстве ускорителей элементарных частиц непременно учитывается уровень микросейсм, поскольку фоновые колебания могут повлиять на точность научных экспериментов. Земля постоянно пребывает в движении, она неспокойна повсюду. Таким образом, важнейшим выводом современного естествознания, в т. ч. и геологической науки, является заключение о том, что Земля - живая планета.
        Вместо заключения
        На этом заканчивается рассказ об истории великих открытий и изобретений. Она, как видно, была непростой, прошла через взлеты и падения. Когда-то миллионер Вандербильт выгнал Вестингауза, предлагавшего тому свое изобретение - знаменитый тормоз для поездов. Ныне же недоверие к первооткрывателям и изобретателям активно сменяется живым интересом. Трудно поверить, однако наука нового тысячелетия проникает в самые недра материи, к истокам движения и бытия.
        Биофизики способны разрезать на 10 кусков мельчайший вирус, размеры которого составляют 0,00001 мм. Молекулярные генетики удаляют лазерным лучом хромосому, не повреждая тканей. Химики строят молекулы заданной конфигурации и складывают из атомов фигурки и картинки. Астрономы посредством нуль-интерферометрии ведут поиски далеких планет в лучах звезд. Люди научились управлять ферментами и гормонами, получили пластичную керамику, соорудили шагающие вездеходы, провели выращивание киборг-нейронов на силиконовой матрице, развили биоэлектрику, добились осуществления «холодного синтеза». Власть человека над материей становится все сильнее.
        Сейчас трудно делать уверенные прогнозы научно-технического развития более чем на десятилетие, поскольку грандиозный прорыв практически во всех областях знания сделал ход пытливой новаторской мысли непредсказуемым. Что касается далекого будущего, прогнозируемого фантастическими романами и кинобоевиками, то можно смело констатировать: наши самые дерзкие представления о Завтра просто смехотворны.
        Так же, наверное, и первобытный землепашец - гениальный изобретатель колеса - пытался вообразить себе начало третьего тысячелетия, в котором оказались мы, его потомки. Наш предок, несомненно, воображал гигантские арбы с бронзовыми колесами, исполинские каменные кромлехи для наблюдения за Солнцем и очаги, не коптящие землянок.
        Точно так же нынешние фантазеры видят в грядущем армады звездолетов, циклопические строения, витающие в воздухе, и массу механических слуг-андроидов. Этого никогда не будет, потому что придумано на слишком зыбкой основе достижений XX в. Наша гигантомания и наш техницизм вскоре отступят на задний план, поскольку сознание меняется одновременно с ростом научного могущества. Хотя ясно и другое. Внутрь атомного ядра люди не спрячутся - миниатюризация не беспредельна. Кроме того, она, как и гигантизация, не является самоцелью.
        Одно можно сказать наверняка. Прогресс невозможно остановить, и не за горами время, когда левитирующие поезда окажутся в музее рядом с каменными топорами. То, что сегодня считается нашим несомненным успехом, завтра войдет в обновленный справочник по истории открытий и изобретений человечества. Это будет очередной сборник реликвий гениальности и памятников научного творчества, которые должен знать каждый человек, идущий в ногу со временем.

 
Книги из этой электронной библиотеки, лучше всего читать через программы-читалки: ICE Book Reader, Book Reader, BookZ Reader. Для андроида Alreader, CoolReader. Библиотека построена на некоммерческой основе (без рекламы), благодаря энтузиазму библиотекаря. В случае технических проблем обращаться к